国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Heim Backend-Entwicklung Python-Tutorial Wie optimiert man HSV-Grenzen für eine genaue Farberkennung in OpenCV?

Wie optimiert man HSV-Grenzen für eine genaue Farberkennung in OpenCV?

Dec 01, 2024 am 10:00 AM

How to Optimize HSV Boundaries for Accurate Color Detection in OpenCV?

Auswahl optimaler HSV-Grenzen für die Farberkennung mit cv::inRange (OpenCV)

In der Bildverarbeitung wird h?ufig der HSV-Farbraum verwendet zur Farberkennung. Die Auswahl geeigneter oberer und unterer HSV-Grenzen ist entscheidend für die genaue Identifizierung der Zielfarben. Diese Frage untersucht den Auswahlprozess für ein Bild mit einem orangefarbenen Deckel auf einer Kaffeedose.

Obwohl ein gesch?tzter HSV-Mittelwert von (22, 59, 100) für den Deckel angegeben wurde, wurde ein erster Versuch mit Grenzen (18) durchgeführt , 40, 90) und (27, 255, 255) lieferten unbefriedigende Ergebnisse. Um dies zu beheben, müssen wir potenzielle Probleme in der HSV-Skala und im Bildformat berücksichtigen.

Problem 1: HSV-Skalenvarianz

Verschiedene Anwendungen k?nnen unterschiedliche HSV-Skalen verwenden. GIMP verwendet H = 0–360, S = 0–100, V = 0–100, w?hrend OpenCV H: 0–179, S: 0–255, V: 0–255 verwendet. In diesem Fall sollte der GIMP-Farbtonwert (22) halbiert werden, um der Skala von OpenCV zu entsprechen, was zu einem Bereich von (5, 50, 50) – (15, 255, 255) führt.

Problem 2: Bildformatkonvertierung

OpenCV arbeitet mit Bildern im BGR-Format, nicht mit RGB. Daher ist es notwendig, die Farbkonvertierungslinie in cv.CvtColor(frame, frameHSV, cv.CV_BGR2HSV) zu ?ndern. Dadurch wird sichergestellt, dass das Bild vor der HSV-Grenzerkennung korrekt konvertiert wird.

Durch die Einbeziehung dieser Anpassungen erhalten wir ein vielversprechenderes Ergebnis:

[Bild der verbesserten Erkennung]

Obwohl Die Ausgabe ist nicht perfekt, die Erkennung des orangefarbenen Deckels ist verbessert. Falsche Erkennungen k?nnen minimiert werden, indem die gr??te Kontur ausgew?hlt wird, die dem Lid entspricht.

Schlussfolgerung

Die Auswahl geeigneter HSV-Grenzen erfordert die Berücksichtigung von Ma?stabsabweichungen und die ordnungsgem??e Konvertierung des Bildformats. Durch die Behebung dieser Probleme k?nnen wir die Genauigkeit der Farberkennung mithilfe von cv::inRange in OpenCV verbessern.

Das obige ist der detaillierte Inhalt vonWie optimiert man HSV-Grenzen für eine genaue Farberkennung in OpenCV?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erkl?rung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Hei?e KI -Werkzeuge

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?e Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie erleichtert Pythons unittestes oder PyTest -Framework automatisierte Tests? Wie erleichtert Pythons unittestes oder PyTest -Framework automatisierte Tests? Jun 19, 2025 am 01:10 AM

Pythons untestestes und PyTest sind zwei weit verbreitete Test -Frameworks, die das Schreiben, Organisieren und Ausführen automatisierter Tests vereinfachen. 1. Beide unterstützen die automatische Entdeckung von Testf?llen und liefern eine klare Teststruktur: Unittest definiert Tests durch Erben der Testpase -Klasse und beginnt mit Test \ _; PyTest ist pr?gnanter, ben?tigen nur eine Funktion, die mit Test \ _ beginnt. 2. Sie alle haben eine integrierte Behauptungsunterstützung: Unittest bietet AssertEqual, AssertRue und andere Methoden, w?hrend PyTest eine erweiterte Anweisung für die Assert verwendet, um die Fehlerdetails automatisch anzuzeigen. 3. Alle haben Mechanismen für die Vorbereitung und Reinigung von Tests: un

Wie geht Python in Funktionen mit ver?nderlichen Standardargumenten um und warum kann dies problematisch sein? Wie geht Python in Funktionen mit ver?nderlichen Standardargumenten um und warum kann dies problematisch sein? Jun 14, 2025 am 12:27 AM

Die Standardparameter von Python werden nur einmal in der Definition initialisiert. Wenn ver?nderliche Objekte (z. B. Listen oder W?rterbücher) als Standardparameter verwendet werden, kann ein unerwartetes Verhalten verursacht werden. Wenn Sie beispielsweise eine leere Liste als Standardparameter verwenden, werden mehrere Aufrufe zur Funktion dieselbe Liste wiederverwendet, anstatt jedes Mal eine neue Liste zu generieren. Zu den Problemen, die durch dieses Verhalten verursacht werden, geh?ren: 1. Unerwartete Freigabe von Daten zwischen Funktionsaufrufen; 2. Die Ergebnisse nachfolgender Anrufe werden durch frühere Anrufe beeinflusst, wodurch die Schwierigkeit des Debuggens erh?ht wird. 3. Es verursacht logische Fehler und ist schwer zu erkennen. 4. Es ist leicht, sowohl Anf?nger als auch erfahrene Entwickler zu verwirren. Um Probleme zu vermeiden, besteht die beste Praxis darin, den Standardwert auf keine festzulegen und ein neues Objekt in der Funktion zu erstellen, z.

Wie kann Python in einer Microservices -Architektur in andere Sprachen oder Systeme integriert werden? Wie kann Python in einer Microservices -Architektur in andere Sprachen oder Systeme integriert werden? Jun 14, 2025 am 12:25 AM

Python arbeitet gut mit anderen Sprachen und Systemen in der Microservice -Architektur zusammen. Der Schlüssel ist, wie jeder Dienst unabh?ngig l?uft und effektiv kommuniziert. 1. Verwendung von Standard -APIs und Kommunikationsprotokollen (wie HTTP, Rest, GRPC) erstellt Python APIs über Frameworks wie Flask und Fastapi und verwendet Anforderungen oder HTTPX, um andere Sprachdienste aufzurufen. 2. Python -Dienste k?nnen mithilfe von Nachrichtenmakler (wie Kafka, Rabbitmq, Redis) zur Realisierung der asynchronen Kommunikation Nachrichten ver?ffentlichen, um andere Sprachverbraucher zu verarbeiten und die Systementkopplung, Skalierbarkeit und Fehlertoleranz zu verbessern. 3.. Erweitern oder einbetten Sie andere Sprachlaufzeiten (wie Jython) durch C/C aus, um die Implementierung zu erreichen

Wie verbessert List, W?rterbuch und Set -Verst?ndnis die Code -Lesbarkeit und -versicht in Python? Wie verbessert List, W?rterbuch und Set -Verst?ndnis die Code -Lesbarkeit und -versicht in Python? Jun 14, 2025 am 12:31 AM

Pythons Liste, Dictionary und Sammelableitung verbessert die Lesbarkeit der Code und die Schreibeffizienz durch pr?zise Syntax. Sie eignen sich zur Vereinfachung der Iterations- und Konvertierungsvorg?nge, z. B. das Ersetzen von Multi-Line-Schleifen durch Einzelliniencode, um Elementtransformation oder Filterung zu implementieren. 1. Listen Sie die Verst?ndnisse wie [x2forxinRange (10)] direkt quadratische Sequenzen erzeugen; 2. Dictionary-Verst?ndnisse wie {x: x2forxinRange (5)} drücken Sie eindeutig die Kartierung des Schlüsselwerts aus; 3. bedingte Filterung wie [xforxinnumbersifx%2 == 0] macht die Filterlogik intuitiver; 4. Komplexe Bedingungen k?nnen auch eingebettet werden, wie z. überm??ige Verschachtelungs- oder Nebenwirkungsoperationen sollten jedoch vermieden werden, um die Verringerung der Wartbarkeit zu vermeiden. Der rationale Einsatz der Ableitung kann sich verringern

Wie kann Python zur Datenanalyse und -manipulation mit Bibliotheken wie Numpy und Pandas verwendet werden? Wie kann Python zur Datenanalyse und -manipulation mit Bibliotheken wie Numpy und Pandas verwendet werden? Jun 19, 2025 am 01:04 AM

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Wie k?nnen Sie benutzerdefinierte Iteratoren in Python mit __iter__ und __next__ implementieren? Wie k?nnen Sie benutzerdefinierte Iteratoren in Python mit __iter__ und __next__ implementieren? Jun 19, 2025 am 01:12 AM

Um einen benutzerdefinierten Iterator zu implementieren, müssen Sie die Methoden __iter__ und __next__ in der Klasse definieren. ① Die __iter__ -Methode gibt das Iteratorobjekt selbst, normalerweise selbst, um mit iterativen Umgebungen wie für Schleifen kompatibel zu sein. ② Die __Next__ -Methode steuert den Wert jeder Iteration, gibt das n?chste Element in der Sequenz zurück, und wenn es keine weiteren Elemente mehr gibt, sollte die Ausnahme der Stopperation geworfen werden. ③ Der Status muss korrekt nachverfolgt werden und die Beendigungsbedingungen müssen festgelegt werden, um unendliche Schleifen zu vermeiden. ④ Komplexe Logik wie Filterung von Dateizeilen und achten Sie auf die Reinigung der Ressourcen und die Speicherverwaltung; ⑤ Für eine einfache Logik k?nnen Sie stattdessen die Funktionsertrags für Generator verwenden, müssen jedoch eine geeignete Methode basierend auf dem spezifischen Szenario ausw?hlen.

Was sind dynamische Programmierungstechniken und wie verwende ich sie in Python? Was sind dynamische Programmierungstechniken und wie verwende ich sie in Python? Jun 20, 2025 am 12:57 AM

Die dynamische Programmierung (DP) optimiert den L?sungsprozess, indem komplexe Probleme in einfachere Unterprobleme zerlegt und deren Ergebnisse gespeichert werden, um wiederholte Berechnungen zu vermeiden. Es gibt zwei Hauptmethoden: 1. Top-Down (Memorisierung): Das Problem rekursiv zerlegen und Cache verwenden, um Zwischenergebnisse zu speichern; 2. Bottom-up (Tabelle): Iterativ L?sungen aus der grundlegenden Situation erstellen. Geeignet für Szenarien, in denen maximale/minimale Werte, optimale L?sungen oder überlappende Unterprobleme erforderlich sind, wie Fibonacci -Sequenzen, Rucksackprobleme usw. In Python k?nnen sie durch Dekoratoren oder Arrays implementiert werden, und die Aufmerksamkeit sollte für die Identifizierung rekursiver Beziehungen gezahlt werden, und die Optimierung der Komplexit?t des Raums.

Was sind regul?re Ausdrücke in Python und wie kann das RE -Modul für das Musteranpassung verwendet werden? Was sind regul?re Ausdrücke in Python und wie kann das RE -Modul für das Musteranpassung verwendet werden? Jun 14, 2025 am 12:26 AM

Die regul?ren Ausdrücke von Python bieten leistungsstarke Textverarbeitungsfunktionen über das RE -Modul, mit dem Zeichenfolgen übereinstimmen, extrahieren und ersetzen k?nnen. 1. verwenden Sie Re.Search (), um festzustellen, ob in der Zeichenfolge ein bestimmtes Muster vorhanden ist. 2. Re.Match () stimmt nur vom Beginn der Zeichenfolge überein, re.Fullmatch () muss genau mit der gesamten Zeichenfolge übereinstimmen. 3.. Re.Findall () gibt eine Liste aller nicht überlappenden übereinstimmungen zurück; 4. Spezielle Symbole wie \ d repr?sentieren eine Zahl, \ w ein Wortzeichen repr?sentiert, \ s ein leeres Zeichen *,,? repr?sentiert eine Wiederholung von 0 oder mehrmals, 1 oder mehrmals, 0 bzw. 1 Zeit; 5. Verwenden Sie Klammern, um eine Erfassungsgruppe zu erstellen, um Informationen zu extrahieren, z. B. den Benutzernamen und den Domainnamen von E -Mails zu trennen. 6

See all articles