国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Heim Backend-Entwicklung Python-Tutorial Wie lade ich gro?e Dateien effizient mit FastAPI hoch?

Wie lade ich gro?e Dateien effizient mit FastAPI hoch?

Dec 02, 2024 am 01:13 AM

How to Efficiently Upload Large Files with FastAPI?

Hochladen gro?er Dateien mit der Serverseite von FastAPI

Der FastAPI-Server kann das Hochladen gro?er Dateien mithilfe der UploadFile-Klasse verarbeiten. Hier ist ein Beispiel:

async def uploadfiles(upload_file: UploadFile = File(...)):
    ...

Problem mit clientseitigen Anfragen

Beim Senden gro?er Dateien vom Client k?nnen aus folgenden Gründen Probleme auftreten:

  1. multipart/form-data Header: Die Anfrage des Clients sollte den Content-Type-Header als angeben multipart/form-data, gefolgt von der erforderlichen Grenzzeichenfolge. Wenn Sie jedoch keine Bibliothek zum Verarbeiten von Datei-Uploads verwenden, müssen Sie diesen Header manuell festlegen.
  2. MultipartEncoder-Verwendung: Stellen Sie sicher, dass der MultipartEncoder den Dateinamen einschlie?t, wenn er das Feld für upload_file deklariert.
  3. Bibliotheksempfehlungen: Verwendung veralteter Bibliotheken (z. B. request-toolbelt) für Datei-Uploads wird nicht empfohlen. Erw?gen Sie stattdessen die Verwendung von Python-Anfragen oder HTTPX, da diese eine bessere Unterstützung für das Hochladen gro?er Dateien bieten.

Schnellere Option mit .stream()

Durch Zugriff auf die Anfrage body als Stream speichern, k?nnen Sie vermeiden, die gesamte Datei in den Speicher zu laden, was zu schnelleren Uploads führt. Dies kann mit der Methode .stream() erreicht werden. Hier ist ein Beispiel für die Verwendung der Streaming-Form-Data-Bibliothek:

from streaming_form_data import StreamingFormDataParser
from streaming_form_data.targets import FileTarget
request_body = await request.stream()
parser = StreamingFormDataParser(headers=request.headers)
parser.register('upload_file', FileTarget(filepath))
async for chunk in request_body:
    parser.data_received(chunk)

Alternative Option mit UploadFile und Form

Wenn Sie lieber einen regul?ren Verteidigungsendpunkt verwenden m?chten, sind Sie hier richtig kann Datei-Uploads wie folgt verarbeiten:

from fastapi import File, UploadFile, Form, HTTPException, status
import aiofiles
import os

CHUNK_SIZE = 1024 * 1024

@app.post("/upload")
async def upload(file: UploadFile = File(...), data: str = Form(...)):
    try:
        filepath = os.path.join('./', os.path.basename(file.filename))
        async with aiofiles.open(filepath, 'wb') as f:
            while chunk := await file.read(CHUNK_SIZE):
                await f.write(chunk)
    except Exception:
        raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
                            detail='There was an error uploading the file')
    finally:
        await file.close()

    return {"message": f"Successfuly uploaded {file.filename}"}

HTTPX-Client erh?hen Timeout

Bei Verwendung der HTTPX-Bibliothek müssen Sie m?glicherweise das Timeout erh?hen, um Lese-Timeouts beim Hochladen gro?er Dateien zu verhindern.

timeout = httpx.Timeout(None, read=180.0)

Das obige ist der detaillierte Inhalt vonWie lade ich gro?e Dateien effizient mit FastAPI hoch?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erkl?rung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Hei?e KI -Werkzeuge

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?e Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Was sind einige h?ufige Sicherheitslücken in Python -Webanwendungen (z. B. XSS, SQL -Injektion) und wie k?nnen sie gemindert werden? Was sind einige h?ufige Sicherheitslücken in Python -Webanwendungen (z. B. XSS, SQL -Injektion) und wie k?nnen sie gemindert werden? Jun 10, 2025 am 12:13 AM

Die Sicherheit der Webanwendungen muss beachtet werden. Zu den h?ufigen Schwachstellen auf Python -Websites geh?ren XSS, SQL Injection, CSRF und Datei -Upload -Risiken. Für XSS sollte die Template -Engine verwendet werden, um automatisch zu entkommen, reichhaltiger Text -HTML -und CSP -Richtlinien zu filtern. Um die SQL -Injektion, eine parametrisierte Abfrage oder das ORM -Framework zu verhindern und die Benutzereingabe zu überprüfen; Um CSRF zu verhindern, muss der CSRFTToken -Mechanismus aktiviert und sensible Operationen zweimal best?tigt werden. Datei -Upload -Schwachstellen müssen verwendet werden, um Typen zu beschr?nken, Dateien umzubenennen und die Ausführungsberechtigungen zu verbieten. Das Befolgen der Normen und die Verwendung von ausgereiften Tools kann das Risiko effektiv reduzieren, und die Sicherheitsanforderungen müssen kontinuierliche Aufmerksamkeit und Tests ben?tigt.

Wie erleichtert Pythons unittestes oder PyTest -Framework automatisierte Tests? Wie erleichtert Pythons unittestes oder PyTest -Framework automatisierte Tests? Jun 19, 2025 am 01:10 AM

Pythons untestestes und PyTest sind zwei weit verbreitete Test -Frameworks, die das Schreiben, Organisieren und Ausführen automatisierter Tests vereinfachen. 1. Beide unterstützen die automatische Entdeckung von Testf?llen und liefern eine klare Teststruktur: Unittest definiert Tests durch Erben der Testpase -Klasse und beginnt mit Test \ _; PyTest ist pr?gnanter, ben?tigen nur eine Funktion, die mit Test \ _ beginnt. 2. Sie alle haben eine integrierte Behauptungsunterstützung: Unittest bietet AssertEqual, AssertRue und andere Methoden, w?hrend PyTest eine erweiterte Anweisung für die Assert verwendet, um die Fehlerdetails automatisch anzuzeigen. 3. Alle haben Mechanismen für die Vorbereitung und Reinigung von Tests: un

Was sind die überlegungen zur Bereitstellung von Python -Anwendungen in Produktionsumgebungen? Was sind die überlegungen zur Bereitstellung von Python -Anwendungen in Produktionsumgebungen? Jun 10, 2025 am 12:14 AM

Die Bereitstellung von Python -Anwendungen in Produktionsumgebungen erfordert Aufmerksamkeit für Stabilit?t, Sicherheit und Wartung. Verwenden Sie zun?chst Gunicorn oder UWSGI, um den Entwicklungsserver zu ersetzen, um die gleichzeitige Verarbeitung zu unterstützen. Zweitens kooperieren Sie mit Nginx als umgekehrter Proxy, um die Leistung zu verbessern. Drittens konfigurieren Sie die Anzahl der Prozesse gem?? der Anzahl der CPU -Kerne, um die Ressourcen zu optimieren. Viertens verwenden Sie eine virtuelle Umgebung, um Abh?ngigkeiten zu isolieren und Versionen einzufrieren, um Konsistenz zu gew?hrleisten. Fünftens, detaillierte Protokolle aktivieren, überwachungssysteme integrieren und Alarmmechanismen einrichten, um den Betrieb und die Wartung zu erleichtern. Sechstens, vermeiden Sie Root -Berechtigungen, um Anwendungen auszuführen, die Debugging -Informationen zu schlie?en und HTTPS zu konfigurieren, um die Sicherheit zu gew?hrleisten. Schlie?lich wird die automatische Bereitstellung durch CI/CD -Tools erreicht, um menschliche Fehler zu reduzieren.

Wie geht Python in Funktionen mit ver?nderlichen Standardargumenten um und warum kann dies problematisch sein? Wie geht Python in Funktionen mit ver?nderlichen Standardargumenten um und warum kann dies problematisch sein? Jun 14, 2025 am 12:27 AM

Die Standardparameter von Python werden nur einmal in der Definition initialisiert. Wenn ver?nderliche Objekte (z. B. Listen oder W?rterbücher) als Standardparameter verwendet werden, kann ein unerwartetes Verhalten verursacht werden. Wenn Sie beispielsweise eine leere Liste als Standardparameter verwenden, werden mehrere Aufrufe zur Funktion dieselbe Liste wiederverwendet, anstatt jedes Mal eine neue Liste zu generieren. Zu den Problemen, die durch dieses Verhalten verursacht werden, geh?ren: 1. Unerwartete Freigabe von Daten zwischen Funktionsaufrufen; 2. Die Ergebnisse nachfolgender Anrufe werden durch frühere Anrufe beeinflusst, wodurch die Schwierigkeit des Debuggens erh?ht wird. 3. Es verursacht logische Fehler und ist schwer zu erkennen. 4. Es ist leicht, sowohl Anf?nger als auch erfahrene Entwickler zu verwirren. Um Probleme zu vermeiden, besteht die beste Praxis darin, den Standardwert auf keine festzulegen und ein neues Objekt in der Funktion zu erstellen, z.

Wie kann Python in einer Microservices -Architektur in andere Sprachen oder Systeme integriert werden? Wie kann Python in einer Microservices -Architektur in andere Sprachen oder Systeme integriert werden? Jun 14, 2025 am 12:25 AM

Python arbeitet gut mit anderen Sprachen und Systemen in der Microservice -Architektur zusammen. Der Schlüssel ist, wie jeder Dienst unabh?ngig l?uft und effektiv kommuniziert. 1. Verwendung von Standard -APIs und Kommunikationsprotokollen (wie HTTP, Rest, GRPC) erstellt Python APIs über Frameworks wie Flask und Fastapi und verwendet Anforderungen oder HTTPX, um andere Sprachdienste aufzurufen. 2. Python -Dienste k?nnen mithilfe von Nachrichtenmakler (wie Kafka, Rabbitmq, Redis) zur Realisierung der asynchronen Kommunikation Nachrichten ver?ffentlichen, um andere Sprachverbraucher zu verarbeiten und die Systementkopplung, Skalierbarkeit und Fehlertoleranz zu verbessern. 3.. Erweitern oder einbetten Sie andere Sprachlaufzeiten (wie Jython) durch C/C aus, um die Implementierung zu erreichen

Wie kann Python zur Datenanalyse und -manipulation mit Bibliotheken wie Numpy und Pandas verwendet werden? Wie kann Python zur Datenanalyse und -manipulation mit Bibliotheken wie Numpy und Pandas verwendet werden? Jun 19, 2025 am 01:04 AM

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Wie verbessert List, W?rterbuch und Set -Verst?ndnis die Code -Lesbarkeit und -versicht in Python? Wie verbessert List, W?rterbuch und Set -Verst?ndnis die Code -Lesbarkeit und -versicht in Python? Jun 14, 2025 am 12:31 AM

Pythons Liste, Dictionary und Sammelableitung verbessert die Lesbarkeit der Code und die Schreibeffizienz durch pr?zise Syntax. Sie eignen sich zur Vereinfachung der Iterations- und Konvertierungsvorg?nge, z. B. das Ersetzen von Multi-Line-Schleifen durch Einzelliniencode, um Elementtransformation oder Filterung zu implementieren. 1. Listen Sie die Verst?ndnisse wie [x2forxinRange (10)] direkt quadratische Sequenzen erzeugen; 2. Dictionary-Verst?ndnisse wie {x: x2forxinRange (5)} drücken Sie eindeutig die Kartierung des Schlüsselwerts aus; 3. bedingte Filterung wie [xforxinnumbersifx%2 == 0] macht die Filterlogik intuitiver; 4. Komplexe Bedingungen k?nnen auch eingebettet werden, wie z. überm??ige Verschachtelungs- oder Nebenwirkungsoperationen sollten jedoch vermieden werden, um die Verringerung der Wartbarkeit zu vermeiden. Der rationale Einsatz der Ableitung kann sich verringern

Wie k?nnen Sie benutzerdefinierte Iteratoren in Python mit __iter__ und __next__ implementieren? Wie k?nnen Sie benutzerdefinierte Iteratoren in Python mit __iter__ und __next__ implementieren? Jun 19, 2025 am 01:12 AM

Um einen benutzerdefinierten Iterator zu implementieren, müssen Sie die Methoden __iter__ und __next__ in der Klasse definieren. ① Die __iter__ -Methode gibt das Iteratorobjekt selbst, normalerweise selbst, um mit iterativen Umgebungen wie für Schleifen kompatibel zu sein. ② Die __Next__ -Methode steuert den Wert jeder Iteration, gibt das n?chste Element in der Sequenz zurück, und wenn es keine weiteren Elemente mehr gibt, sollte die Ausnahme der Stopperation geworfen werden. ③ Der Status muss korrekt nachverfolgt werden und die Beendigungsbedingungen müssen festgelegt werden, um unendliche Schleifen zu vermeiden. ④ Komplexe Logik wie Filterung von Dateizeilen und achten Sie auf die Reinigung der Ressourcen und die Speicherverwaltung; ⑤ Für eine einfache Logik k?nnen Sie stattdessen die Funktionsertrags für Generator verwenden, müssen jedoch eine geeignete Methode basierend auf dem spezifischen Szenario ausw?hlen.

See all articles