When I first started building Colorify Rocks, my color palette website, I had no idea how deep the rabbit hole of programmatic color manipulation would go. What started as a simple "let me build a color picker" project turned into a fascinating journey through color theory, mathematical color spaces, and accessibility considerations. Today, I want to share what I learned while building this tool, along with some Python code that might help you in your own color adventures.
It's Just Colors, How Hard Can It Be?
Oh, past me. How naive you were! My journey started with a simple goal: build a website where people could generate and save color palettes. Easy, right? Just grab a hex code and... wait, what's HSL? And why do we need RGB? And what in the world is CMYK?
Want to see what I'm talking about? Check out our color analysis for #3B49DF
Here's the first piece of code I wrote to handle color conversions, which now makes me chuckle at its simplicity:
class Color: def __init__(self, hex_code): self.hex = hex_code.lstrip('#') # Past me: "This is probably all I need!" def to_rgb(self): # My first "aha!" moment with color spaces r = int(self.hex[0:2], 16) g = int(self.hex[2:4], 16) b = int(self.hex[4:6], 16) return f"rgb({r},{g},)"
Everything is Math
Then came the moment I realized that colors are basically just math in disguise. Converting between color spaces meant diving into algorithms I hadn't touched since high school. Here's what the code evolved into
def _rgb_to_hsl(self): # This was my "mind-blown" moment r, g, b = [x/255 for x in (self.rgb['r'], self.rgb['g'], self.rgb['b'])] cmax, cmin = max(r, g, b), min(r, g, b) delta = cmax - cmin # The math that made me question everything I knew about colors h = 0 if delta != 0: if cmax == r: h = 60 * (((g - b) / delta) % 6) elif cmax == g: h = 60 * ((b - r) / delta + 2) else: h = 60 * ((r - g) / delta + 4) l = (cmax + cmin) / 2 s = 0 if delta == 0 else delta / (1 - abs(2 * l - 1)) return { 'h': round(h), 's': round(s * 100), 'l': round(l * 100) }
Colors Have Relationships
One of the most exciting features I built for Colorify Rocks was the color harmony generator. It turns out colors have relationships with each other, just like musical notes! Here's how I implemented color harmonies:
def get_color_harmonies(self, color): """ This is probably my favorite piece of code in the entire project. It's like playing with a color wheel, but in code! """ h, s, l = color.hsl['h'], color.hsl['s'], color.hsl['l'] return { 'complementary': self._get_complementary(h, s, l), 'analogous': self._get_analogous(h, s, l), 'triadic': self._get_triadic(h, s, l), 'split_complementary': self._get_split_complementary(h, s, l) } def _get_analogous(self, h, s, l): # The magic numbers that make designers happy return [ self._hsl_to_hex((h - 30) % 360, s, l), self._hsl_to_hex(h, s, l), self._hsl_to_hex((h + 30) % 360, s, l) ]
Accessibility
The biggest eye-opener came when a user with color blindness submitted feedback. I had completely overlooked accessibility! This led me to implement color blindness simulation:
def simulate_color_blindness(self, color, type='protanopia'): """ This feature wasn't in my original plan, but it became one of the most important parts of Colorify Rocks """ matrices = { 'protanopia': [ [0.567, 0.433, 0], [0.558, 0.442, 0], [0, 0.242, 0.758] ], # Added more types after learning about different forms of color blindness 'deuteranopia': [ [0.625, 0.375, 0], [0.7, 0.3, 0], [0, 0.3, 0.7] ] } # Matrix multiplication that makes sure everyone can use our color palettes return self._apply_color_matrix(color, matrices[type])
As Colorify Rocks grew, designers started asking for more features. The big one? Shades and tints of colors. This led to some fun experimentation:
def get_color_variations(self, color, steps=10): """ This started as a simple feature request and turned into one of our most-used tools """ return { 'shades': self._generate_shades(color, steps), 'tints': self._generate_tints(color, steps), 'tones': self._generate_tones(color, steps) }
The above is the detailed content of Color Theory: Playing with Colors Programmatically. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

Python's default parameters are only initialized once when defined. If mutable objects (such as lists or dictionaries) are used as default parameters, unexpected behavior may be caused. For example, when using an empty list as the default parameter, multiple calls to the function will reuse the same list instead of generating a new list each time. Problems caused by this behavior include: 1. Unexpected sharing of data between function calls; 2. The results of subsequent calls are affected by previous calls, increasing the difficulty of debugging; 3. It causes logical errors and is difficult to detect; 4. It is easy to confuse both novice and experienced developers. To avoid problems, the best practice is to set the default value to None and create a new object inside the function, such as using my_list=None instead of my_list=[] and initially in the function

Python works well with other languages ??and systems in microservice architecture, the key is how each service runs independently and communicates effectively. 1. Using standard APIs and communication protocols (such as HTTP, REST, gRPC), Python builds APIs through frameworks such as Flask and FastAPI, and uses requests or httpx to call other language services; 2. Using message brokers (such as Kafka, RabbitMQ, Redis) to realize asynchronous communication, Python services can publish messages for other language consumers to process, improving system decoupling, scalability and fault tolerance; 3. Expand or embed other language runtimes (such as Jython) through C/C to achieve implementation

Python's list, dictionary and collection derivation improves code readability and writing efficiency through concise syntax. They are suitable for simplifying iteration and conversion operations, such as replacing multi-line loops with single-line code to implement element transformation or filtering. 1. List comprehensions such as [x2forxinrange(10)] can directly generate square sequences; 2. Dictionary comprehensions such as {x:x2forxinrange(5)} clearly express key-value mapping; 3. Conditional filtering such as [xforxinnumbersifx%2==0] makes the filtering logic more intuitive; 4. Complex conditions can also be embedded, such as combining multi-condition filtering or ternary expressions; but excessive nesting or side-effect operations should be avoided to avoid reducing maintainability. The rational use of derivation can reduce

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

Python's regular expressions provide powerful text processing capabilities through the re module, which can be used to match, extract and replace strings. 1. Use re.search() to find whether there is a specified pattern in the string; 2. re.match() only matches from the beginning of the string, re.fullmatch() needs to match the entire string exactly; 3. re.findall() returns a list of all non-overlapping matches; 4. Special symbols such as \d represents a number, \w represents a word character, \s represents a blank character, *, , ? represents a repeat of 0 or multiple times, 1 or multiple times, 0 or 1 time, respectively; 5. Use brackets to create a capture group to extract information, such as separating username and domain name from email; 6
