国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Java javaTutorial Recursion: Concepts, Components, and Practical Applications — Java

Recursion: Concepts, Components, and Practical Applications — Java

Jan 13, 2025 am 10:44 AM

Recursion: Concepts, Components, and Practical Applications — Java

This article explains the concept of recursion in programming. It describes its key components: the base case and the recursive case. Using a Java example, it illustrates how recursion is implemented and emphasizes safeguards to prevent infinite loops and stack overflow errors.


In computer science, understanding the concept of recursion is essential as it is often the base of more complex algorithms, and in programming, it is a tool used to solve problems by breaking them down into smaller, more manageable subproblems. This post explores the components of a recursive method — the base case and the recursive case — using the programming language Java.

Recursive Method Explanation

A recursive algorithm or method solves complex problems by calling itself and by breaking the problems into smaller, more manageable subproblems.

The basic components to create a recursive method are a base case and a recursive case.

  • A base case is a condition that when met stops the recursion, usually in an if statement.
  • A recursive case is a set of code lines or functionalities that are computed ‘if’ the base case condition is not met, always followed by the recursive method calling itself usually with a modified input. Typically, the code lines and the recursive call are found in an ‘else’ statement following the ‘if’ statement checking if the base condition is met. However, If the ‘if’ statement contains a ‘return’ statement, the code lines and the recursive call are found right after the ‘if’ statement.

Note that a recursive method that calls itself with an unmodified input, or a recursive method that does not take an input, will not create an infinitely recursive loop if and only if the base case condition is based on external factors that change independently of the method’s input.

To avoid creating an infinitely recursive method, the method needs to contain at least one base case that will eventually be reached. Note that a recursive method can have more than one base case. For example, the recursive method can contain a base case that checks a specific condition, and others can act as safeguards. If the first base case condition is never reached, a safeguard such as a counter can limit the number of recursions based on the available computing memory, preventing a stack overflow error.

On a side note: the Python programming language has a built-in mechanism that limits the number of recursions a program can perform. If needed, this limit can be modified, either decreased or increased, by using the Python system (sys) library.

Here is an example of a recursion method:

import java.util.Random;

public class AreWeThereYet {
    private static final Random randomGenerateMiles = new Random();

    public static void askAreWeThereYet(int totalMilesDriven, int tripTotalMiles) {

        // ---- Base case ---- We've arrived!
        if (totalMilesDriven >= tripTotalMiles) {
            System.out.println("We're here! Finally!");
            return;
        }

        // ---- Recursive case ----
        // Miles driven
        int milesDriven = randomGenerateMiles.nextInt(50) + 1; // Drive 1-50 miles

        // Keep asking and driving
        System.out.println("Are we there yet?");
        System.out.println("Not yet, we've traveled " + totalMilesDriven + "miles.");

        if (milesDriven + totalMilesDriven >= tripTotalMiles) {
            milesDriven = tripTotalMiles - totalMilesDriven;
        }

        System.out.println("--- Drives " + milesDriven + " miles ---");
        totalMilesDriven += milesDriven;

        // ---- Recursive call ----
        askAreWeThereYet(totalMilesDriven, tripTotalMiles);
    }

    public static void main(String[] args) {
        int tripTotalMiles = 100; // Total trip distance
        System.out.println("Trip total miles: " + tripTotalMiles);
        askAreWeThereYet(0, tripTotalMiles);
    }
}

Output

import java.util.Random;

public class AreWeThereYet {
    private static final Random randomGenerateMiles = new Random();

    public static void askAreWeThereYet(int totalMilesDriven, int tripTotalMiles) {

        // ---- Base case ---- We've arrived!
        if (totalMilesDriven >= tripTotalMiles) {
            System.out.println("We're here! Finally!");
            return;
        }

        // ---- Recursive case ----
        // Miles driven
        int milesDriven = randomGenerateMiles.nextInt(50) + 1; // Drive 1-50 miles

        // Keep asking and driving
        System.out.println("Are we there yet?");
        System.out.println("Not yet, we've traveled " + totalMilesDriven + "miles.");

        if (milesDriven + totalMilesDriven >= tripTotalMiles) {
            milesDriven = tripTotalMiles - totalMilesDriven;
        }

        System.out.println("--- Drives " + milesDriven + " miles ---");
        totalMilesDriven += milesDriven;

        // ---- Recursive call ----
        askAreWeThereYet(totalMilesDriven, tripTotalMiles);
    }

    public static void main(String[] args) {
        int tripTotalMiles = 100; // Total trip distance
        System.out.println("Trip total miles: " + tripTotalMiles);
        askAreWeThereYet(0, tripTotalMiles);
    }
}

To summarize, recursion is an elegant and powerful approach to solving complex problems. By defining a base case and a recursive case, developers can create algorithms that effectively manage problem complexity. However, it is important to ensure that recursion stops appropriately to prevent infinite loops or stack overflow errors. The provided Java example, “AreWeThereYet,” illustrates these principles in action, showing how recursion can be used dynamically to solve a problem while maintaining clarity and functionality. As we continue to explore programming techniques, recursion remains an invaluable skill that underscores the importance of thoughtful problem decomposition and method design.


Originally published at Alex.omegapy on Medium by Level UP Coding on November 8, 2024.

The above is the detailed content of Recursion: Concepts, Components, and Practical Applications — Java. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Difference between HashMap and Hashtable? Difference between HashMap and Hashtable? Jun 24, 2025 pm 09:41 PM

The difference between HashMap and Hashtable is mainly reflected in thread safety, null value support and performance. 1. In terms of thread safety, Hashtable is thread-safe, and its methods are mostly synchronous methods, while HashMap does not perform synchronization processing, which is not thread-safe; 2. In terms of null value support, HashMap allows one null key and multiple null values, while Hashtable does not allow null keys or values, otherwise a NullPointerException will be thrown; 3. In terms of performance, HashMap is more efficient because there is no synchronization mechanism, and Hashtable has a low locking performance for each operation. It is recommended to use ConcurrentHashMap instead.

What are static methods in interfaces? What are static methods in interfaces? Jun 24, 2025 pm 10:57 PM

StaticmethodsininterfaceswereintroducedinJava8toallowutilityfunctionswithintheinterfaceitself.BeforeJava8,suchfunctionsrequiredseparatehelperclasses,leadingtodisorganizedcode.Now,staticmethodsprovidethreekeybenefits:1)theyenableutilitymethodsdirectly

How does JIT compiler optimize code? How does JIT compiler optimize code? Jun 24, 2025 pm 10:45 PM

The JIT compiler optimizes code through four methods: method inline, hot spot detection and compilation, type speculation and devirtualization, and redundant operation elimination. 1. Method inline reduces call overhead and inserts frequently called small methods directly into the call; 2. Hot spot detection and high-frequency code execution and centrally optimize it to save resources; 3. Type speculation collects runtime type information to achieve devirtualization calls, improving efficiency; 4. Redundant operations eliminate useless calculations and inspections based on operational data deletion, enhancing performance.

What is an instance initializer block? What is an instance initializer block? Jun 25, 2025 pm 12:21 PM

Instance initialization blocks are used in Java to run initialization logic when creating objects, which are executed before the constructor. It is suitable for scenarios where multiple constructors share initialization code, complex field initialization, or anonymous class initialization scenarios. Unlike static initialization blocks, it is executed every time it is instantiated, while static initialization blocks only run once when the class is loaded.

Why do we need wrapper classes? Why do we need wrapper classes? Jun 28, 2025 am 01:01 AM

Java uses wrapper classes because basic data types cannot directly participate in object-oriented operations, and object forms are often required in actual needs; 1. Collection classes can only store objects, such as Lists use automatic boxing to store numerical values; 2. Generics do not support basic types, and packaging classes must be used as type parameters; 3. Packaging classes can represent null values ??to distinguish unset or missing data; 4. Packaging classes provide practical methods such as string conversion to facilitate data parsing and processing, so in scenarios where these characteristics are needed, packaging classes are indispensable.

What is the Factory pattern? What is the Factory pattern? Jun 24, 2025 pm 11:29 PM

Factory mode is used to encapsulate object creation logic, making the code more flexible, easy to maintain, and loosely coupled. The core answer is: by centrally managing object creation logic, hiding implementation details, and supporting the creation of multiple related objects. The specific description is as follows: the factory mode handes object creation to a special factory class or method for processing, avoiding the use of newClass() directly; it is suitable for scenarios where multiple types of related objects are created, creation logic may change, and implementation details need to be hidden; for example, in the payment processor, Stripe, PayPal and other instances are created through factories; its implementation includes the object returned by the factory class based on input parameters, and all objects realize a common interface; common variants include simple factories, factory methods and abstract factories, which are suitable for different complexities.

What is the `final` keyword for variables? What is the `final` keyword for variables? Jun 24, 2025 pm 07:29 PM

InJava,thefinalkeywordpreventsavariable’svaluefrombeingchangedafterassignment,butitsbehaviordiffersforprimitivesandobjectreferences.Forprimitivevariables,finalmakesthevalueconstant,asinfinalintMAX_SPEED=100;wherereassignmentcausesanerror.Forobjectref

What is type casting? What is type casting? Jun 24, 2025 pm 11:09 PM

There are two types of conversion: implicit and explicit. 1. Implicit conversion occurs automatically, such as converting int to double; 2. Explicit conversion requires manual operation, such as using (int)myDouble. A case where type conversion is required includes processing user input, mathematical operations, or passing different types of values ??between functions. Issues that need to be noted are: turning floating-point numbers into integers will truncate the fractional part, turning large types into small types may lead to data loss, and some languages ??do not allow direct conversion of specific types. A proper understanding of language conversion rules helps avoid errors.

See all articles