国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

目次
Google Colab で完全なコードにアクセスします
Crawl4AI と Pydantic を選ぶ理由
なぜ Tokopedia をターゲットにするのですか?
このアプローチの特徴は何ですか?
開発環(huán)境のセットアップ
Pydantic を使用したデータ モデルの定義
スクレイピングプロセス
1.商品リストをクロール
2.製品詳細(xì)を取得しています
ステージの結(jié)合
スクレーパーの実行
プロのヒント
次のステップ
結(jié)論
重要なリンク:
クロール4AI
ピダンティック
注: 完全なコードは Colab ノートブックで入手できます。 自由に実験して、特定のニーズに合わせて調(diào)整してください。
ホームページ バックエンド開発 Python チュートリアル Pydantic、Crawl、Gemini を使用した非同期電子商取引 Web スクレイパーの構(gòu)築

Pydantic、Crawl、Gemini を使用した非同期電子商取引 Web スクレイパーの構(gòu)築

Jan 12, 2025 am 06:25 AM

Building an Async E-Commerce Web Scraper with Pydantic, Crawl & Gemini

要約: このガイドでは、crawl4ai の AI を活用した抽出と Pydantic データ モデルを使用して、e コマース スクレーパーを構(gòu)築する方法を説明します。 スクレイパーは、製品リスト (名前、価格) と詳細(xì)な製品情報 (仕様、レビュー) の両方を非同期的に取得します。

Google Colab で完全なコードにアクセスします


電子商取引データ分析のための従來の Web スクレイピングの複雑さにうんざりしていませんか?このチュートリアルでは、最新の Python ツールを使用してプロセスを簡素化します。インテリジェントなデータ抽出には crawl4ai を、堅牢なデータ モデリングと検証には Pydantic を活用します。

Crawl4AI と Pydantic を選ぶ理由

  • crawl4ai: AI 主導(dǎo)の抽出方法を使用して、Web のクローリングとスクレイピングを合理化します。
  • Pydantic: データ検証とスキーマ管理を提供し、構(gòu)造化された正確なスクレイピング データを保証します。

なぜ Tokopedia をターゲットにするのですか?

インドネシアの大手電子商取引プラットフォームである Tokopedia が例として挙げられます。 (注: 著者はインドネシア人であり、プラットフォームのユーザーですが、提攜はしていません。) この原則は他の電子商取引サイトにも適用されます。 このスクレイピング アプローチは、e コマース分析、市場調(diào)査、自動データ収集に興味のある開発者にとって有益です。

このアプローチの特徴は何ですか?

複雑な CSS セレクターや XPath に依存する代わりに、crawl4ai の LLM ベースの抽出を利用します。これにより以下が提供されます:

  • Web サイト構(gòu)造の変更に対する復(fù)元力の強(qiáng)化
  • よりクリーンで構(gòu)造化されたデータ出力。
  • メンテナンスのオーバーヘッドを削減します。

開発環(huán)境のセットアップ

必要なパッケージをインストールすることから始めます:

%pip install -U crawl4ai
%pip install nest_asyncio
%pip install pydantic

ノートブックでの非同期コード実行の場合は、nest_asyncio:

も使用します。
import crawl4ai
import asyncio
import nest_asyncio
nest_asyncio.apply()

Pydantic を使用したデータ モデルの定義

私たちは Pydantic を使用して、予想されるデータ構(gòu)造を定義します。 モデルは次のとおりです:

from pydantic import BaseModel, Field
from typing import List, Optional

class TokopediaListingItem(BaseModel):
    product_name: str = Field(..., description="Product name from listing.")
    product_url: str = Field(..., description="URL to product detail page.")
    price: str = Field(None, description="Price displayed in listing.")
    store_name: str = Field(None, description="Store name from listing.")
    rating: str = Field(None, description="Rating (1-5 scale) from listing.")
    image_url: str = Field(None, description="Primary image URL from listing.")

class TokopediaProductDetail(BaseModel):
    product_name: str = Field(..., description="Product name from detail page.")
    all_images: List[str] = Field(default_factory=list, description="List of all product image URLs.")
    specs: str = Field(None, description="Technical specifications or short info.")
    description: str = Field(None, description="Long product description.")
    variants: List[str] = Field(default_factory=list, description="List of variants or color options.")
    satisfaction_percentage: Optional[str] = Field(None, description="Customer satisfaction percentage.")
    total_ratings: Optional[str] = Field(None, description="Total number of ratings.")
    total_reviews: Optional[str] = Field(None, description="Total number of reviews.")
    stock: Optional[str] = Field(None, description="Stock availability.")

これらのモデルはテンプレートとして機(jī)能し、データ検証を確実にし、明確なドキュメントを提供します。

スクレイピングプロセス

スクレーパーは 2 つのフェーズで動作します:

1.商品リストをクロール

まず、検索結(jié)果ページを取得します。

async def crawl_tokopedia_listings(query: str = "mouse-wireless", max_pages: int = 1):
    # ... (Code remains the same) ...

2.製品詳細(xì)を取得しています

次に、製品 URL ごとに詳細(xì)情報を取得します。

async def crawl_tokopedia_detail(product_url: str):
    # ... (Code remains the same) ...

ステージの結(jié)合

最後に、両方のフェーズを統(tǒng)合します。

async def run_full_scrape(query="mouse-wireless", max_pages=2, limit=15):
    # ... (Code remains the same) ...

スクレーパーの実行

スクレイパーを?qū)g行する方法は次のとおりです:

%pip install -U crawl4ai
%pip install nest_asyncio
%pip install pydantic

プロのヒント

  1. レート制限: Tokopedia のサーバーを尊重します。大規(guī)模なスクレイピングのリクエスト間に遅延が発生します。
  2. キャッシュ: 開発中に roll4ai のキャッシュを有効にします (cache_mode=CacheMode.ENABLED)。
  3. エラー処理: 運(yùn)用環(huán)境で使用するための包括的なエラー処理および再試行メカニズムを?qū)g裝します。
  4. API キー: Gemini API キーはコード內(nèi)に直接ではなく、環(huán)境変數(shù)に安全に保存します。

次のステップ

このスクレーパーは次のように拡張できます:

  • データをデータベースに保存します。
  • モニター価格は時間の経過とともに変化します。
  • 製品の傾向とパターンを分析します。
  • 複數(shù)の店舗の価格を比較します。

結(jié)論

crawl4ai の LLM ベースの抽出により、従來の方法と比較して Web スクレイピングの保守性が大幅に向上します。 Pydantic との統(tǒng)合により、データの正確性と構(gòu)造が保証されます。

スクレイピングする前に、必ず Web サイトの robots.txt と利用規(guī)約を遵守してください。


重要なリンク:

クロール4AI

ピダンティック


注: 完全なコードは Colab ノートブックで入手できます。 自由に実験して、特定のニーズに合わせて調(diào)整してください。

以上がPydantic、Crawl、Gemini を使用した非同期電子商取引 Web スクレイパーの構(gòu)築の詳細(xì)內(nèi)容です。詳細(xì)については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當(dāng)する法的責(zé)任を負(fù)いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強(qiáng)力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python Webアプリケーション(XSS、SQLインジェクションなど)の一般的なセキュリティの脆弱性は何ですか?また、どのように緩和できますか? Python Webアプリケーション(XSS、SQLインジェクションなど)の一般的なセキュリティの脆弱性は何ですか?また、どのように緩和できますか? Jun 10, 2025 am 12:13 AM

Webアプリケーションのセキュリティに注意する必要があります。 Python Webサイトの一般的な脆弱性には、XSS、SQLインジェクション、CSRF、およびファイルアップロードリスクが含まれます。 XSSの場合、テンプレートエンジンを使用して、自動的にエスケープし、豊富なテキストHTMLをフィルタリングし、CSPポリシーを設(shè)定する必要があります。 SQLインジェクション、パラメーター化されたクエリまたはORMフレームワークを防ぎ、ユーザー入力を検証するため。 CSRFを防ぐには、CSRFTTOKENメカニズムを有効にし、機(jī)密操作を2回確認(rèn)する必要があります。ファイルアップロード脆弱性を使用して、タイプを制限し、ファイルの名前を変更し、実行権限を禁止する必要があります。規(guī)範(fàn)に従って、成熟したツールを使用すると、リスクが効果的に減少し、安全性が継続的に注意とテストを必要とします。

Pythonの不適格またはPytestフレームワークは、自動テストをどのように促進(jìn)しますか? Pythonの不適格またはPytestフレームワークは、自動テストをどのように促進(jìn)しますか? Jun 19, 2025 am 01:10 AM

Pythonの不適格でPytestは、自動テストの書き込み、整理、および実行を簡素化する2つの広く使用されているテストフレームワークです。 1.両方とも、テストケースの自動発見をサポートし、明確なテスト構(gòu)造を提供します。 pytestはより簡潔で、テスト\ _から始まる関數(shù)が必要です。 2。それらはすべて組み込みのアサーションサポートを持っています:Unittestはアサートエクイアル、アサートトルー、およびその他の方法を提供しますが、Pytestは拡張されたアサートステートメントを使用して障害の詳細(xì)を自動的に表示します。 3.すべてがテストの準(zhǔn)備とクリーニングを処理するためのメカニズムを持っています:un

Pythonは関數(shù)の可変デフォルト引數(shù)をどのように処理しますか、そしてなぜこれが問題になるのでしょうか? Pythonは関數(shù)の可変デフォルト引數(shù)をどのように処理しますか、そしてなぜこれが問題になるのでしょうか? Jun 14, 2025 am 12:27 AM

Pythonのデフォルトパラメーターは、定義されたときに1回のみ初期化されます。可変オブジェクト(リストや辭書など)がデフォルトのパラメーターとして使用される場合、予期しない動作が引き起こされる可能性があります。たとえば、空のリストをデフォルトのパラメーターとして使用する場合、関數(shù)への複數(shù)の呼び出しは、毎回新しいリストを生成する代わりに同じリストを再利用します。この動作によって引き起こされる問題には、次のものが含まれます。1。関數(shù)呼び出し間のデータの予期しない共有。 2。その後の呼び出しの結(jié)果は、以前の呼び出しの影響を受け、デバッグの難しさを増加させます。 3.論理エラーを引き起こし、検出が困難です。 4.初心者と経験豊富な開発者の両方を混亂させるのは簡単です。問題を回避するために、ベストプラクティスは、デフォルト値をNONEに設(shè)定し、関數(shù)內(nèi)に新しいオブジェクトを作成することです。

Pythonアプリケーションを生産環(huán)境に展開するための考慮事項は何ですか? Pythonアプリケーションを生産環(huán)境に展開するための考慮事項は何ですか? Jun 10, 2025 am 12:14 AM

Pythonアプリケーションを生産環(huán)境に展開するには、安定性、セキュリティ、メンテナンスに注意が必要です。まず、GunicornまたはUWSGIを使用して開発サーバーを置き換えて、同時処理をサポートします。第二に、パフォーマンスを改善するための逆プロキシとしてNginxと協(xié)力します。第三に、リソースを最適化するためにCPUコアの數(shù)に従ってプロセスの數(shù)を構(gòu)成します。第4に、仮想環(huán)境を使用して依存関係を分離し、バージョンをフリーズして一貫性を確保します。第5に、詳細(xì)なログを有効にし、監(jiān)視システムを統(tǒng)合し、操作とメンテナンスを容易にするアラームメカニズムを設(shè)定します。第六に、アプリケーションを?qū)g行するためのルートアクセス許可を避け、デバッグ情報を閉じ、HTTPSを構(gòu)成してセキュリティを確保します。最後に、自動展開はCI/CDツールを通じて達(dá)成され、人的エラーを減らします。

PythonをMicroservicesアーキテクチャ內(nèi)の他の言語やシステムとどのように統(tǒng)合できますか? PythonをMicroservicesアーキテクチャ內(nèi)の他の言語やシステムとどのように統(tǒng)合できますか? Jun 14, 2025 am 12:25 AM

Pythonは、マイクロサービスアーキテクチャの他の言語やシステムとうまく機(jī)能します。キーは、各サービスが獨(dú)立して実行され、効果的に通信する方法です。 1.標(biāo)準(zhǔn)のAPIおよび通信プロトコル(HTTP、REST、GRPCなど)を使用して、PythonはFlaskやFastapiなどのフレームワークを介してAPIを構(gòu)築し、リクエストまたはHTTPXを使用して他の言語サービスを呼び出します。 2。メッセージブローカー(Kafka、Rabbitmq、Redisなど)を使用して非同期コミュニケーションを?qū)g現(xiàn)するために、Python Servicesは他の言語消費(fèi)者向けのメッセージを公開して、システム分離、スケーラビリティ、フォールトトレランスを改善します。 3.実裝を?qū)g現(xiàn)するために、他の言語のランタイム(Jythonなど)をC/Cから拡張または埋め込んだ

Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisduetonumpyandpandas.1)numpyexcelsatnumericalcompitations withfast、多次元路面およびベクトル化された分離likenp.sqrt()

リスト、辭書、および設(shè)定された包括的設(shè)定は、Pythonのコードの読みやすさと簡潔さをどのように改善しますか? リスト、辭書、および設(shè)定された包括的設(shè)定は、Pythonのコードの読みやすさと簡潔さをどのように改善しますか? Jun 14, 2025 am 12:31 AM

Pythonのリスト、辭書、コレクションの派生は、簡潔な構(gòu)文を通じてコードの読みやすさと書き込み効率を向上させます。これらは、マルチラインループをシングルラインコードに置き換えて要素変換またはフィルタリングを?qū)g裝するなど、イテレーションおよび変換操作を簡素化するのに適しています。 1. [x2forxinrange(10)]などの包括的リストは、正方形シーケンスを直接生成できます。 2。{x:x2forxinrange(5)}などの辭書の包括的な辭書は、キー値マッピングを明確に表現(xiàn)しています。 3。[XForxinNumberSifx%2 == 0]などの條件フィルタリングにより、フィルタリングロジックがより直感的になります。 4。複雑な條件を埋め込むこともできます。たとえば、マルチコンディションフィルタリングや三元式の組み合わせなど。しかし、保守性の低下を避けるために、過度のネスティングまたは副作用操作を避ける必要があります。派生の合理的な使用は減少する可能性があります

__iter__と__next__を使用してPythonにカスタムイテレーターを?qū)g裝するにはどうすればよいですか? __iter__と__next__を使用してPythonにカスタムイテレーターを?qū)g裝するにはどうすればよいですか? Jun 19, 2025 am 01:12 AM

カスタムイテレーターを?qū)g裝するには、クラス內(nèi)の__iter__および__next__メソッドを定義する必要があります。 __iter__メソッドは、ループなどの反復(fù)環(huán)境と互換性があるように、通常は自己の反復(fù)オブジェクト自體を返します。 __next__メソッドは、各反復(fù)の値を制御し、シーケンスの次の要素を返し、アイテムがもうない場合、停止例外をスローする必要があります。 statusステータスを正しく追跡する必要があり、無限のループを避けるために終了條件を設(shè)定する必要があります。 fileファイルラインフィルタリングなどの複雑なロジック、およびリソースクリーニングとメモリ管理に注意を払ってください。 simple単純なロジックについては、代わりにジェネレーター関數(shù)の収率を使用することを検討できますが、特定のシナリオに基づいて適切な方法を選択する必要があります。

See all articles