??
????? ??? ??? ????? ??? ????? ?? ??? ?? ?? ???? ???? ????. ?? ????? ?? ??, ??? ???? ?? ???? ????? ??? ???? ?? ????? ?? ?? ??? ???? ??? ??? ??? ?????. ??? ????? ???? ??? ??? ????? ??? ???? ??? ???? ???? ??? ?????? ? ??? ???? ??? ???? ??????.
1. ???? ? ????
1.1 ?? ??? ??? ???
?? ???? ???? ????? ????? "??? ??? ???? ????? ??? ?? ???? ??? ??? ??? ?? ?? ???????."?? ???? ?? ?? ????. ??? ?? ?? ???? ?? ?? ??? ??? ????.
? ??? ???? ??????. ?? ???? PDF ????, ?? ???? Excel ???????, ??? ??? ?? ???? ??? ???? ?????. ???? ??? ??? ??? ?? ?? ??? ?? ??? ???? ??? ?? ??? ?? ??????.
? ??? ??? ??????. ?? ??? ??? ????, ??? ??? ? ? ? ?? ?? ??? ?? ? ????. ??? ?? ?? ??? ?? ??? ?? ???? ? ??? ??? ???? ??? ??? ??? ??? ????.
??? ??? ??? ????. ?? ??? ????? ??? ?? ???? ??? ?? ?? ? ??? ?? ??? ?? ??? ?? ??? ?????. ??? ?? ??? ???? ??? ??? ?? ??? ??? ?? ?? ??? ?????.
1.2 ??? ?? ????
??? ???? ??? ???? ??? ?? AI ??, ?? LangChain? RAG ??? ???? ??? ?? ??? ?? ???? ??? ? ????
? ???? ??? ?????. ??? ?? ????? ?????? ?? ???? ???? ??? ??? ????. ?????:
?? ??? ?? ?? ???? ???? ??? ??? ? ??? ?? ??. ???? ?? ?? ??? ??? ??? ??? ?? ??? ???? ?? ??? ??? ??? ?? ????.
?? ? ??? ??? ??? ??? ? ??? ???? ?? ???? ?? ????? ???. ???? ???? ?? ?? ???? ???? ???? ???? ??? ? ???? ???? ??? ??? ? ??? ? ????.
?? ??? ?? ??? ????? ???. ?? ?? ???? ?? ?? ??? ?? ??? ?? ??? ? ?? ?? ??? ?????. ??? ???? ????? ? ??? ?????? ???.
? ??? ?? ? ???? ??? ????? ???? ??? ????. ??? ??? ?? ? ?? ????? ?? ??? ????? ?? ??? ???? ?? ?? ?????.
2. ??? ???? ??
2.1 ???? ???? ??
? ?? ??? ?? ???? ??? ? ??? ?? ??? ??? ???? ????? ?? ?? ??? ???? ???? ??? ? ?? ???? ???? ????? ???? ???????.
???? ??? ?? ?? ??? 3?? ???? ??? ??????.
??? ?? ??? ??? ???? ?? ??? ??? ??? ??? ???? ??? ? ?? ??? ??? ??? ?????. ???? ??? ??, ?????? ???? ?? ????? ???? ? ????.
?? ?? ?? ??? LangChain ?? RAG ??? ???? ???? ?????. ??? ???? ????? ?? ???? ??? ??? ???? ????? ?? ? ??? ?????. ?? ? ?????? ??? ?? ??? ?? ??? ? ??? ??? ??? ??????.
??? ?? ?? ?????? ??? ?? API ?????? ??? ??? ?? ??? ?????. ???? ??? ??? ?? ?? ??? ?? ? ???, ???? ??? ??? ??? ???? ??? ???? ?? ?????.
2.2 ?? ?? ??
? ????? ???? ??? ? ?? ?? ?? ??? ??????.
??? ?? ?? ??? ??? ??? ? ??? ??? ???? ? ??? ???. ????? ??? ?? ??, ??? ??? ????? ???? ???? ?? ??? ???? ??? ? ?? ??? ?? ??? ??????. ?? ??? ?? ???? ??? ???? ?? ?? ?? ??? ?????? ??? ??? ????? ????? ???.
?? ?? ??? ??? ??? ??? ?? ???? ?????.
- ?? ??? ??? ???? RAG ??? ?? ??? ?? ??? ???? ??? ? ????
- ?? ?????? ??? ?? ??? ?? ??? ?? ?? ?? ???? ??? ? ?? ?? ?? ??? ?????
- ?? ?? ????? ? ?? ??? ?? ??? ???? ?????
???? ?????? ???? ??? ??? ??? ???.
- API ?????? ?? ??? ??? ???? ?? ?? ?? ? ?????? ?????
- ??? ??? ??? ??? ?? ?? ??? ?? ??? ???? ?????
- ??? ???? ??? ??? ??? ?? ?? ??? ??? ??? ? ????
2.3 ?? ?? ???
?????? ???? ??? ? ??, ??, ??? ?? ?? ?? ?????. ???? ?? ??? ???? ??? ??? ?? ??? ?? ??? ??? ??? ??????.
?? ?? ??
?? ???? ??? ? ?? ? ?? ???? ??? ?? ?? ???? ??? ??? ????. ????? ??? LLM? ?? ??? ???? ?? ??? API ?? ??? ??? ?? ????. ?? ?? ??? ??? ?? ?? ????? ??????:
? ??? ?? ???? ???? ?? ??? ?????. ?? ??, 100??? ??? ?? ???? ??? ??? ?? ????? ?????. ??? ????? ???? ?? ????? ???? ?? ??? ?? ?????. ??, ??? ?? ???? ???? ?? ? ?? ??? ?? ?? ???? ???? ???? ?? ?? ?? ??? ??????.
?? ?? ??? ???
?? ????? ? ??? ?????. ?? ?? ??? ??? ??? ? ????. ??? ?? ??? ??????:
??? ???? ?? ????? ??????. ???? ?? ??? ???? ???? ?? ??? ???? ???? ?? ????? ???? ???? ??? ?? ?? ??? ? ? ??? ???. ?? ?? ?? ?? ??? ?? ??? ?? ????, ??? ????? ?? ?? ??? ?????.
?? ??? ?? ??? ???? ??? ?? ???????. ???? ??? ?? ??? ?? ??? ??????? ????? ???? ?? ??? ??? ??? ???? ?? ?? ??? ? ? ????. ? ???? ?? ??? ????? ??? ??? ?? ??????.
?? ?? ????
?????? ???? ??? ????? ???? ?? ??? ?? ??? ???? ???.
??? ??? ?? ??? ??????. ????? ???? ?? ??? ?? ???? ?? ??? ?? ? ???? ????? ?????. ???? ??? ??? ??? ???? ?? ??? ???? ???? ??? ???? ???? ?? ??? ?? ????.
?? ??? ?? ?? ???? ????? ??????. ??? ???? ?? ??? ??? ? ??? ??? ?? ???? ? ??? ??? ??? ? ????. ??? ???? ?? ??? ?? ??? ????? ?? ??? ?????.
?? ?? ???
?? ????? ?? ???? ??? ?? ???? ??? ? ???? ??? ???? ?? ??? ???? ?????. ??? ??? ??? ?? ?? ????? ??????.
??? ?? ????? ??? ?? ?? ?? ??? ??????.
- ?? ??? ??? ??: Sentinel ??? ???? ??? ?? ??? ????? ?????? ????? ???? ???? ???? ?????
- ?? ??? ??: ??? ??? ?? ???? ?? ??? ?? ??? ???? ??? ?? ? ???? ?????
- ?? ??? ??: ???? ?? ???? ???? ???? ??? ?? ??? ??? 100? ???? ? ????? ??? ???? ?? ?? ????? ?????
?? ????? ??? ?? ???? ??????.
- ??? ??? ??: ?? ??? ?? ???? ???? ??? ??? ??? ??? ?????. ?? ??, ???? "??" ??? ???? ?? ??? ??? ??? ??? ???
- ?? ?? ????: ??? ?? ??? ?? ???? ??? ???? ?? ??? ?? ???? ?????
- ??? ??? ??: ?? ??? ??? ??? ????, ????? ?? ??? ???? ?? ??? ?????
?? '??? ??' ????? ??????. ???? ? ?? ??? ?? ?? ??? ???? ???? ?? ?? ??? ? ? ??? ? ??? ????.
- ?? ???(90% ??): ????? ??? ???? ? ?? ??? ?? ???? ???? ???
- ?? ???(70%-90%): ?? ??? ??? ???? ?? ??
- ?? ???(70% ??): ???? ????? ??? ?? ??? ???? ?? ????? ? ?? ??
? ??? ?? ?? ???? ?? ????? ???? ?? ??? ??? ??? ?? ???? ?? ??? ?? ?? ??? ???? ??? ? ????.
3. ??? ?? ?? ??
3.1 ?? ??? ??? ??
?? ??? ??? ??? ?? ??? ???? ?? ????? ??? ??? ?? ? ?????. ??? ?? ??? ??? ??? ?? ??? ???? ??????.
3.1.1 ?? ??? ?? ??
??? ??? ?? ???? ?? ?? ?? ?? ?????? ??????.
class FinancialReportParser: def __init__(self): self.pdf_parser = PDFParser() self.excel_parser = ExcelParser() self.html_parser = HTMLParser() def parse(self, file_path): file_type = self._detect_file_type(file_path) if file_type == 'pdf': return self.pdf_parser.extract_tables(file_path) elif file_type == 'excel': return self.excel_parser.parse_sheets(file_path) elif file_type == 'html': return self.html_parser.extract_data(file_path)
?? PDF ??? ?????? ??, ??? ?? ??? ? ?? ??? ???? ??? ?????? ???? ???? ??????.
3.1.2 ??? ??? ??
??? ???? ???? ?? ?? ?? ??? ??? ??????.
class FinancialDataNormalizer: def normalize(self, raw_data): # 1. Field mapping standardization mapped_data = self._map_to_standard_fields(raw_data) # 2. Value unit unification unified_data = self._unify_units(mapped_data) # 3. Time series alignment aligned_data = self._align_time_series(unified_data) # 4. Data quality check validated_data = self._validate_data(aligned_data) return validated_data
3.1.3 ?? ?? ??
???? ?? ?? ??? ???? ???? ??? ? ????.
class FinancialMetricsCalculator: def calculate_metrics(self, financial_data): metrics = { 'profitability': { 'roe': self._calculate_roe(financial_data), 'roa': self._calculate_roa(financial_data), 'gross_margin': self._calculate_gross_margin(financial_data) }, 'solvency': { 'debt_ratio': self._calculate_debt_ratio(financial_data), 'current_ratio': self._calculate_current_ratio(financial_data) }, 'growth': { 'revenue_growth': self._calculate_revenue_growth(financial_data), 'profit_growth': self._calculate_profit_growth(financial_data) } } return metrics
3.2 ?? ?? ??
3.2.1 RSS ?? ??
??? ?? ?? ???? ??????.
class NewsAggregator: def __init__(self): self.rss_sources = self._load_rss_sources() self.news_queue = Queue() def start_collection(self): for source in self.rss_sources: Thread( target=self._collect_from_source, args=(source,) ).start() def _collect_from_source(self, source): while True: news_items = self._fetch_news(source) for item in news_items: if self._is_relevant(item): self.news_queue.put(item) time.sleep(source.refresh_interval)
3.2.2 ?? ?? ? ???
???? ?? ?? ?? ??? ??:
class NewsClassifier: def __init__(self): self.model = self._load_classifier_model() self.categories = [ 'earnings', 'merger_acquisition', 'market_analysis', 'policy_regulation' ] def classify(self, news_item): # 1. Feature extraction features = self._extract_features(news_item) # 2. Predict category category = self.model.predict(features) # 3. Calculate confidence confidence = self.model.predict_proba(features).max() return { 'category': category, 'confidence': confidence }
3.2.3 ??? ???? ????
Redis ?? ??? ???? ??? ??:
class RealTimeNewsUpdater: def __init__(self): self.redis_client = Redis() self.update_interval = 60 # seconds def process_updates(self): while True: # 1. Get latest news news_items = self.news_queue.get_latest() # 2. Update vector store self._update_vector_store(news_items) # 3. Trigger real-time analysis self._trigger_analysis(news_items) # 4. Notify subscribed clients self._notify_subscribers(news_items)
3.3 ??? ?? ??? ??
3.3.1 WebSocket ??? ??? ??
??? ?? ??? ?? ????? ??:
class MarketDataStreamer: def __init__(self): self.websocket = None self.buffer_size = 1000 self.data_buffer = deque(maxlen=self.buffer_size) async def connect(self, market_url): self.websocket = await websockets.connect(market_url) asyncio.create_task(self._process_stream()) async def _process_stream(self): while True: data = await self.websocket.recv() parsed_data = self._parse_market_data(data) self.data_buffer.append(parsed_data) await self._trigger_analysis(parsed_data)
3.3.2 ??? ?? ?????
Apache Flink ?? ??? ?? ????? ??:
class MarketDataProcessor: def __init__(self): self.flink_env = StreamExecutionEnvironment.get_execution_environment() self.window_size = Time.seconds(10) def setup_pipeline(self): # 1. Create data stream market_stream = self.flink_env.add_source( MarketDataSource() ) # 2. Set time window windowed_stream = market_stream.window_all( TumblingEventTimeWindows.of(self.window_size) ) # 3. Aggregate calculations aggregated_stream = windowed_stream.aggregate( MarketAggregator() ) # 4. Output results aggregated_stream.add_sink( MarketDataSink() )
3.3.3 ??? ?? ???
???? ??? ?? ?? ??? ??:
class RealTimeMetricsCalculator: def __init__(self): self.metrics_cache = LRUCache(capacity=1000) self.update_threshold = 0.01 # 1% change threshold def calculate_metrics(self, market_data): # 1. Technical indicator calculation technical_indicators = self._calculate_technical(market_data) # 2. Statistical metrics calculation statistical_metrics = self._calculate_statistical(market_data) # 3. Volatility analysis volatility_metrics = self._calculate_volatility(market_data) # 4. Update cache self._update_cache(market_data.symbol, { 'technical': technical_indicators, 'statistical': statistical_metrics, 'volatility': volatility_metrics }) return self.metrics_cache[market_data.symbol]
??? ?? ?? ??? ??? ?? ?? ?? ??? ???? ??? ? ?? ?? ?? ???? ????? ??????. ? ???? ??? ??? ?? ???? ???? ??? ? ?? ?? ??? ?? ??? ????? ???? ?? ?? ? ?? ??? ?? ??? ? ?? ??? ??? ?????.
4. RAG ??? ???
4.1 ?? ?? ??
?? ?????? ??? ?? ?? ?? ??? ??? ??? ???? ???? ??? ??? ????. ??? ??? ??? ?? ??? ?? ???? ?? ??? ??????.
4.1.1 ?? ??? ???? ??
????? ?? ?? ?? ??? ??????.
class FinancialReportChunker: def __init__(self): self.section_patterns = { 'balance_sheet': r'資產(chǎn)負(fù)債表|Balance Sheet', 'income_statement': r'利潤表|Income Statement', 'cash_flow': r'現(xiàn)金流量表|Cash Flow Statement' } def chunk_report(self, report_text): chunks = [] # 1. Identify main sections of the report sections = self._identify_sections(report_text) # 2. Chunk by accounting subjects for section in sections: section_chunks = self._chunk_by_accounts(section) # 3. Add contextual information enriched_chunks = self._enrich_context(section_chunks) chunks.extend(enriched_chunks) return chunks
4.1.2 ??? ?? ??
?? ???? ?? ?? ?? ?? ?? ??? ??????.
class FinancialReportParser: def __init__(self): self.pdf_parser = PDFParser() self.excel_parser = ExcelParser() self.html_parser = HTMLParser() def parse(self, file_path): file_type = self._detect_file_type(file_path) if file_type == 'pdf': return self.pdf_parser.extract_tables(file_path) elif file_type == 'excel': return self.excel_parser.parse_sheets(file_path) elif file_type == 'html': return self.html_parser.extract_data(file_path)
4.1.3 ?? ??? ??? ??
??? ?? ???? ?? ??? ?? ?? ??? ??????.
class FinancialDataNormalizer: def normalize(self, raw_data): # 1. Field mapping standardization mapped_data = self._map_to_standard_fields(raw_data) # 2. Value unit unification unified_data = self._unify_units(mapped_data) # 3. Time series alignment aligned_data = self._align_time_series(unified_data) # 4. Data quality check validated_data = self._validate_data(aligned_data) return validated_data
4.2 ?? ??? ???
4.2.1 ?? ??? ?? ?? ???
?? ???? ?? ?? ??? ????? ?? ?? ??? ??? ?? ??? ??? ??????.
class FinancialMetricsCalculator: def calculate_metrics(self, financial_data): metrics = { 'profitability': { 'roe': self._calculate_roe(financial_data), 'roa': self._calculate_roa(financial_data), 'gross_margin': self._calculate_gross_margin(financial_data) }, 'solvency': { 'debt_ratio': self._calculate_debt_ratio(financial_data), 'current_ratio': self._calculate_current_ratio(financial_data) }, 'growth': { 'revenue_growth': self._calculate_revenue_growth(financial_data), 'profit_growth': self._calculate_profit_growth(financial_data) } } return metrics
4.2.2 ??? ?? ??
?? ???? ??? ??? ???? ?? ? ?? ??? ??????.
class NewsAggregator: def __init__(self): self.rss_sources = self._load_rss_sources() self.news_queue = Queue() def start_collection(self): for source in self.rss_sources: Thread( target=self._collect_from_source, args=(source,) ).start() def _collect_from_source(self, source): while True: news_items = self._fetch_news(source) for item in news_items: if self._is_relevant(item): self.news_queue.put(item) time.sleep(source.refresh_interval)
4.2.3 ??? ?? ????
?? ??? ???? ???? ?? ?? ??? ???? ????? ??????.
class NewsClassifier: def __init__(self): self.model = self._load_classifier_model() self.categories = [ 'earnings', 'merger_acquisition', 'market_analysis', 'policy_regulation' ] def classify(self, news_item): # 1. Feature extraction features = self._extract_features(news_item) # 2. Predict category category = self.model.predict(features) # 3. Calculate confidence confidence = self.model.predict_proba(features).max() return { 'category': category, 'confidence': confidence }
4.3 ?? ?? ??? ??
4.3.1 ?? ??
?? ?? ?? ?? ??? ?? ??:
class RealTimeNewsUpdater: def __init__(self): self.redis_client = Redis() self.update_interval = 60 # seconds def process_updates(self): while True: # 1. Get latest news news_items = self.news_queue.get_latest() # 2. Update vector store self._update_vector_store(news_items) # 3. Trigger real-time analysis self._trigger_analysis(news_items) # 4. Notify subscribed clients self._notify_subscribers(news_items)
4.3.2 ??? ???
?? ???? ??? ?? ?? ??? ?? ????? ??? ??????.
class MarketDataStreamer: def __init__(self): self.websocket = None self.buffer_size = 1000 self.data_buffer = deque(maxlen=self.buffer_size) async def connect(self, market_url): self.websocket = await websockets.connect(market_url) asyncio.create_task(self._process_stream()) async def _process_stream(self): while True: data = await self.websocket.recv() parsed_data = self._parse_market_data(data) self.data_buffer.append(parsed_data) await self._trigger_analysis(parsed_data)
4.3.3 ??? ??
??? ??? ??? ??? ?? ???? ??:
class MarketDataProcessor: def __init__(self): self.flink_env = StreamExecutionEnvironment.get_execution_environment() self.window_size = Time.seconds(10) def setup_pipeline(self): # 1. Create data stream market_stream = self.flink_env.add_source( MarketDataSource() ) # 2. Set time window windowed_stream = market_stream.window_all( TumblingEventTimeWindows.of(self.window_size) ) # 3. Aggregate calculations aggregated_stream = windowed_stream.aggregate( MarketAggregator() ) # 4. Output results aggregated_stream.add_sink( MarketDataSink() )
??? ??? ??? ?? ??? ?? ?????? RAG ???? ??? ?? ???????. ? ???? ?? ??? ?? ??? ?? ???? ???? ?? ?? ???? ??? ? ??? ?? ???? ?? ??? ???????.
5. ?? ????? ??
5.1 ??? ??? ?????
?? ??? ??? ???? ?? ?? ???? ???? ???? ?????. ??? ???? ??? ??? ?????? ??????.
5.1.1 ??? ?? ??
class RealTimeMetricsCalculator: def __init__(self): self.metrics_cache = LRUCache(capacity=1000) self.update_threshold = 0.01 # 1% change threshold def calculate_metrics(self, market_data): # 1. Technical indicator calculation technical_indicators = self._calculate_technical(market_data) # 2. Statistical metrics calculation statistical_metrics = self._calculate_statistical(market_data) # 3. Volatility analysis volatility_metrics = self._calculate_volatility(market_data) # 4. Update cache self._update_cache(market_data.symbol, { 'technical': technical_indicators, 'statistical': statistical_metrics, 'volatility': volatility_metrics }) return self.metrics_cache[market_data.symbol]
5.1.2 ?? ?? ??
class FinancialReportChunker: def __init__(self): self.section_patterns = { 'balance_sheet': r'資產(chǎn)負(fù)債表|Balance Sheet', 'income_statement': r'利潤表|Income Statement', 'cash_flow': r'現(xiàn)金流量表|Cash Flow Statement' } def chunk_report(self, report_text): chunks = [] # 1. Identify main sections of the report sections = self._identify_sections(report_text) # 2. Chunk by accounting subjects for section in sections: section_chunks = self._chunk_by_accounts(section) # 3. Add contextual information enriched_chunks = self._enrich_context(section_chunks) chunks.extend(enriched_chunks) return chunks
5.1.3 ??? ?? ??
class NewsChunker: def __init__(self): self.nlp = spacy.load('zh_core_web_lg') self.min_chunk_size = 100 self.max_chunk_size = 500 def chunk_news(self, news_text): # 1. Semantic paragraph recognition doc = self.nlp(news_text) semantic_paragraphs = self._get_semantic_paragraphs(doc) # 2. Dynamically adjust chunk size chunks = [] current_chunk = [] current_size = 0 for para in semantic_paragraphs: if self._should_start_new_chunk(current_size, len(para)): if current_chunk: chunks.append(self._create_chunk(current_chunk)) current_chunk = [para] current_size = len(para) else: current_chunk.append(para) current_size += len(para) return chunks
5.2 ?? ?? ??
5.2.1 ??? ??? ?? GPT-4
class MarketDataChunker: def __init__(self): self.time_window = timedelta(minutes=5) self.overlap = timedelta(minutes=1) def chunk_market_data(self, market_data): chunks = [] current_time = market_data[0]['timestamp'] end_time = market_data[-1]['timestamp'] while current_time < end_time: window_end = current_time + self.time_window # Extract data within time window window_data = self._extract_window_data( market_data, current_time, window_end ) # Calculate window statistical features window_features = self._calculate_window_features(window_data) chunks.append({ 'time_window': (current_time, window_end), 'data': window_data, 'features': window_features }) current_time += (self.time_window - self.overlap) return chunks
5.2.2 ?? ?? ?? ??
class FinancialEmbeddingOptimizer: def __init__(self): self.base_model = SentenceTransformer('base_model') self.financial_terms = self._load_financial_terms() def optimize_embeddings(self, texts): # 1. Identify financial terminology financial_entities = self._identify_financial_terms(texts) # 2. Enhance weights for financial terms weighted_texts = self._apply_term_weights(texts, financial_entities) # 3. Generate optimized embeddings embeddings = self.base_model.encode( weighted_texts, normalize_embeddings=True ) return embeddings
5.2.3 ?? ?? ????
class MultilingualEmbedder: def __init__(self): self.models = { 'zh': SentenceTransformer('chinese_model'), 'en': SentenceTransformer('english_model') } self.translator = MarianMTTranslator() def generate_embeddings(self, text): # 1. Language detection lang = self._detect_language(text) # 2. Translation if necessary if lang not in self.models: text = self.translator.translate(text, target_lang='en') lang = 'en' # 3. Generate vector representation embedding = self.models[lang].encode(text) return { 'embedding': embedding, 'language': lang }
5.3 ?? ???
5.3.1 ??? ?? ??
class RealTimeIndexUpdater: def __init__(self): self.vector_store = MilvusClient() self.update_buffer = [] self.buffer_size = 100 async def update_index(self, new_data): # 1. Add to update buffer self.update_buffer.append(new_data) # 2. Check if batch update is needed if len(self.update_buffer) >= self.buffer_size: await self._perform_batch_update() async def _perform_batch_update(self): try: # Generate vector representations embeddings = self._generate_embeddings(self.update_buffer) # Update vector index self.vector_store.upsert( embeddings, [doc['id'] for doc in self.update_buffer] ) # Clear buffer self.update_buffer = [] except Exception as e: logger.error(f"Index update failed: {e}")
5.3.2 ?? ??? ???
class TemporalRetriever: def __init__(self): self.decay_factor = 0.1 self.max_age_days = 30 def retrieve(self, query, top_k=5): # 1. Basic semantic retrieval base_results = self._semantic_search(query) # 2. Apply time decay scored_results = [] for result in base_results: age_days = self._calculate_age(result['timestamp']) if age_days <= self.max_age_days: time_score = math.exp(-self.decay_factor * age_days) final_score = result['score'] * time_score scored_results.append({ 'content': result['content'], 'score': final_score, 'timestamp': result['timestamp'] }) # 3. Rerank results return sorted(scored_results, key=lambda x: x['score'], reverse=True)[:top_k]
5.3.3 ????? ?????
class HybridRetriever: def __init__(self): self.semantic_weight = 0.6 self.keyword_weight = 0.2 self.temporal_weight = 0.2 def retrieve(self, query): # 1. Semantic retrieval semantic_results = self._semantic_search(query) # 2. Keyword retrieval keyword_results = self._keyword_search(query) # 3. Temporal relevance temporal_results = self._temporal_search(query) # 4. Result fusion merged_results = self._merge_results( semantic_results, keyword_results, temporal_results ) return merged_results
??? ??? ??? ????? ?? ????? ?? ?????? ???? ???? ?????. ? ?? ??? ???? ???? ????????. ? ???? ??? ?? ?? ??? ???? ??? ????? ??? ? ????.
6. ?? ???? ? ??
6.1 ??? ?? ?? ??????
?? ?? ?????? ?? ???? ?? ??? ?? ?? ?? ????? ?? ???? ??????? ?????. ?????:
????? ????? ??? ??? ????? ?? ?? ???, ????, ?? ? ??? ???? ??????. ??? ???? ???? ??? ???? ?? ??????? ??? ??? ??? ?????. ??, ?? ??? ?? ??? ??, ??, ?? ?? ?? ??? ?????.
?? ?? ???? ???? ??? ???? ?? ?? ???? ?? RAG ?? ????? ?? ?? ????? ?? ??? ???? ?????. ?? ?? ?? ?? ??? ?? ??? ?? ??? ??? ?????.
- ?? ?? ???? ???? ?? ?? ??
- ??? ?? ??? ?? ??? ??? ?????
- ?? ?? ??? ?? ???? ???? ??? ??? ?????
????? ?? ?? ????? ?? ?? ??? ?? ??? ??? ?? ???? ?????.
6.2 ?? ?? ? ?? ?? ??
??? ?? ??????? ???? ??? ?? ??? ??? ?????. ??? ?? ????? ???? ???? ??? ?? ???, ?? ?? ? ?? ???? ?????.
??? ?? ?????? ?? ???? ??? ??? ? ????.
- ?? ??? ???? ??? ??? ?? ??? ??? ????
- ?? ???? ?? ?? ???? ??
- ?? ?? ?? ????? ???? ?? ?? ??
?? ????? ?? ???? ??? ? ???? ?? ????? ????? ??? ??? ?????. ?? ??? ??? ?? ?? ???? ???? ???? ??? ???? ? ??? ???.
6.3 ??? ??? ??
??? ??? ?????? ?? ???? ?? ??? ??? ?? ?? ????? ?? ??? ???? ?????. ?????:
??? ?? ????? ?? ???? ?? ??, ?? ??, ?? ??? ???? ?? ?? ??? ?????.
???? ??? ?? RAG ?? ????? ?? ?? ???? ???? ?????.
-
?? ?? ??? ??:
- ?? ?? ??? ??? ?? ??? ?????
- ?? ?? ??? ?? ?? ??? ?????
- ?? ?? ??? ??? ???? ????? ???? ??? ?????
?? ???? ??? ????? ????? ???? ??? ????? ???? ??? ??? ?? ?? ??? ????? ?????.
6.4 ?? ??
?? ???? ??? ?? ???? ?? ???? ??? ??? ?????.
?? ??? ??: ???? ?? ?? ?? ???? 40% ?????, ?? ??? ??? ??? ? ???????.
?? ?? ???: ??? ??? ?? ?? ?? ???? 85% ??? ?? ?? ???? 30% ???????.
??? ??: ??? ??? ?? ?? ?? ???? 90%? ??? ???? 4.8/5? ?????.
??? ??? ?? ???? ??? ??? ?? ??? ???? ???? ?????. ??, ?? ?? ??? ???? ??? ????? ?? ??? ????? ????? ? ??? ???.
? ??? ?? ??? ?? ??? ?? ??? ??: LangChain ??? ?? ?? ??? RAG ??? ??? ?? ?????. ??? ??? PHP ??? ????? ?? ?? ??? ?????!

? AI ??

Undress AI Tool
??? ???? ??

Undresser.AI Undress
???? ?? ??? ??? ?? AI ?? ?

AI Clothes Remover
???? ?? ???? ??? AI ?????.

Clothoff.io
AI ? ???

Video Face Swap
??? ??? AI ?? ?? ??? ???? ?? ???? ??? ?? ????!

?? ??

??? ??

???++7.3.1
???? ?? ?? ?? ???

SublimeText3 ??? ??
??? ??, ???? ?? ????.

???? 13.0.1 ???
??? PHP ?? ?? ??

???? CS6
??? ? ?? ??

SublimeText3 Mac ??
? ??? ?? ?? ?????(SublimeText3)

??? ??











? ?? ???? ?????? ???????. Python ? ???? ???? ????? XSS, SQL ??, CSRF ? ?? ??? ??? ?????. XSS? ?? ??? ??? ???? ???? ???? ?? ??? HTML? ????? CSP ??? ???????. SQL ??? ???? ?? ?? ??? ? ?? ?? ORM ??? ?? ? ??? ??? ??????. CSRF? ????? CSRFTToken ????? ??????? ??? ??? ? ? ???????. ?? ??? ???? ??? ???? ?? ??? ??? ?? ??? ???? ? ???????. ??? ??? ??? ??? ???? ??? ????? ?? ? ??? ??? ??????? ???? ?????.

Python? Unittest ? Pytest? ??? ? ???? ??, ?? ? ??? ????? ? ?? ?? ???? ??? ??? ?????. 1. ??? ??? ?? ??? ???? ??? ??? ??? ?????. UnitTest? ??? ??? ???? ???? Test \ _? ???? ???? ?????. Pytest? ? ?????. Test \ _?? ???? ?? ? ??????. 2. ??? ?? ?? ? ?? ? ??? ??? ????. UnitTest? Assertequal, AssertTrue ? ?? ??? ???? ?? Pytest? ??? Assert ?? ???? ?? ?? ??? ???? ?????. 3. ?? ??? ?? ? ?? ????? ????? ????.

Python? ?? ?? ??? ?? ? ???? ??????. ?? ??? ?? (? : ?? ?? ??)? ?? ?? ??? ???? ?? ??? ?? ??? ??? ? ????. ?? ??, ? ??? ?? ?? ??? ???? ??? ?? ?? ??? ?? ? ??? ???? ?? ??? ??? ??????. ? ???? ?? ??? ??? ????. 1. ?? ?? ?? ??? ?? ??? ??; 2. ?? ?? ??? ?? ??? ??? ?? ???? ???? ??????. 3. ??? ??? ???? ????? ???. 4. ???? ?? ? ???? ????? ????. ??? ??? ?? ?? ??? ???? ???? ???? my_list = [] ?? my_list = none? ???? ?? ?? ?? ??? ? ??? ??? ???? ??? ????.

?? ??? Python ?? ????? ????? ???, ?? ? ?? ?????? ???????. ?? Gunicorn ?? UWSGI? ???? ?? ??? ???? ?? ??? ?????. ??, ??? ??????? ?? ????? Nginx? ??????. ??, ??? ????? ?? CPU ?? ?? ?? ???? ?? ?????. ??, ?? ??? ???? ???? ???? ??? ???? ???? ?????. ???, ??? ??? ?????, ???? ???? ????, ?? ????? ???? ?? ? ?? ??? ???????. ???, ?? ????? ???? ??? ??? ?? HTTPS? ???? ??? ???? ?? ??? ?????. ?????, ?? ??? ??? ?? CI/CD ??? ?? ?? ??? ?????.

Python? ???? ??? ????? ?? ?? ? ???? ? ?????. ??? ? ???? ????? ???? ????? ???? ?????. 1. ?? API ? ?? ???? (? : HTTP, REST, GRPC)? ???? Python? Flask ? Fastapi? ?? ??? ??? ?? API? ???? ?? ?? HTTPX? ???? ?? ?? ???? ?????. 2. ??? ??? (Kafka, Rabbitmq, Redis)? ???? ??? ??? ???? Python Services? ?? ?? ???? ?? ? ???? ???? ??? ?? ?? ?, ?? ? ? ?? ??? ?? ? ? ????. 3. ??? ???? ?? C/C? ?? ?? ?? ??? (? : Jython)? ?? ?? ??

pythonisidealfordataanalysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationsfast, multi-dimensionalArraysandectorizedOferationsLikenp.sqrt ()

Python? ??, ?? ? ?? ??? ??? ??? ?? ?? ??? ? ?? ???? ??????. ??? ?? ?? ??? ?? ?? ??? ??? ?? ?? ?? ???? ???? ? ?? ? ?? ??? ????? ? ?????. 1. [x2forxinRange (10)]? ?? ?? ??? ?? ???? ?? ?? ? ? ????. 2. {x : x2forxinrange (5)}? ?? ?? ???? ? ? ??? ???? ?????. 3. [xforxinnumbersifx%2 == 0]? ?? ??? ???? ??? ????? ????? ????. 4. ??? ??? ?? ?? ?? ??? ?? 3 ? ???? ???? ?? ?? ?? ? ???. ??? ?? ?? ???? ???? ??? ?? ?? ??? ??? ??????. ??? ???? ??? ?? ? ? ????

??? ?? ???? ????? ????? __iter_ ? __next__ ???? ???????. ① __iter__ ???? ??? ? ?? ??? ???? ??? ?? ?? ??? ?????. ② __next__ ???? ? ??? ?? ????, ?? ??? ??? ????, ? ?? ??? ??? stopiteration ??? ??????. status ??? ???? ??????? ?? ??? ??? ?? ?? ??? ???????. pile ?? ?? ???? ?? ??? ?? ? ??? ?? ? ??? ?????? ?????. simple ??? ??? ?? ?? ??? ?? ???? ???? ?? ??? ? ??? ?? ????? ???? ??? ??? ???????.
