国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

??
單鍵索引
聯(lián)合索引
數組索引
地理空間索引
TTL索引
?? ? ???
?? ???
?? ???
TTL ??? Strong>
條件索引
稀疏索引
文本索引
唯一索引
? ??? ??? ??DB MongoDB? ??? ??? ??? ?? ???? ?????.

MongoDB? ??? ??? ??? ?? ???? ?????.

Feb 17, 2022 am 10:58 AM
mongodb ??? ??

? ??? MongoDB? ???? MongoDB? ??? ??? ??? ???? ? ??? ? ????.

MongoDB? ??? ??? ??? ?? ???? ?????.

MongoDB? ???? MySql? ???? ????? ??? ??? ??? ???, MySql? ????? ?? ?????. <code>MongoDB的索引和MySql的索引的作用和優(yōu)化要遵循的原則基本相似,MySql索引類型基本可以區(qū)分為:

  • 單鍵索引 - 聯(lián)合索引
  • 主鍵索引(聚簇索引) - 非主鍵索引(非聚簇索引)

MongoDB中除了這些基礎的分類之外,還有一些特殊的索引類型,如: 數組索引 | 稀疏索引 | 地理空間索引 | TTL索引等.

為了下面方便測試我們使用腳本插入以下數據

for(var i = 0;i < 100000;i++){
    db.users.insertOne({
        username: "user"+i,
        age: Math.random() * 100,
        sex: i % 2,
        phone: 18468150001+i
    });
}

單鍵索引

單鍵索引即索引的字段只有一個,是最基礎的索引方式.

在集合中使用username字段,創(chuàng)建一個單鍵索引,MongoDB會自動將這個索引命名為username_1

db.users.createIndex({username:1})
&#39;username_1&#39;

在創(chuàng)建索引后查看一下使用username字段的查詢計劃,stageIXSCAN代表使用使用了索引掃描

db.users.find({username:"user40001"}).explain()
{ 
   queryPlanner: 
   { 
     winningPlan: 
     { 
        ......
        stage: &#39;FETCH&#39;,
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { username: 1 },
           indexName: &#39;username_1&#39;,
           ......
        } 
     }
     rejectedPlans: [] ,
   },
   ......
   ok: 1 
}

在索引優(yōu)化的原則當中,有很重要的原則就是索引要建立在基數高的的字段上,所謂基數就是一個字段上不重復數值的個數,即我們在創(chuàng)建users集合時年齡出現的數值是0-99那么age這個字段將會有100個不重復的數值,即age字段的基數為100,而sex這個字段只會出現0 | 1這個兩個值,即sex字段的基礎是2,這是一個相當低的基數,在這種情況下,索引的效率并不高并且會導致索引失效.

下面就船艦一個sex字段索引,來查詢執(zhí)行計劃會發(fā)現,查詢時是走的全表掃描,而沒有走相關索引.

db.users.createIndex({sex:1})
&#39;sex_1&#39;

db.users.find({sex:1}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;COLLSCAN&#39;,
        filter: { sex: { &#39;$eq&#39;: 1 } },
        direction: &#39;forward&#39; 
     },
     rejectedPlans: [] 
  },
  ......
  ok: 1 
}

聯(lián)合索引

聯(lián)合索引即索引上會有多個字段,下面使用agesex兩個字段創(chuàng)建一個索引

db.users.createIndex({age:1,sex:1})
&#39;age_1_sex_1&#39;

然后我們使用這兩個字段進行一次查詢,查看執(zhí)行計劃,順利地走了這條索引

db.users.find({age:23,sex:1}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { age: 1, sex: 1 },
           indexName: &#39;age_1_sex_1&#39;,
           .......
           indexBounds: { age: [ &#39;[23, 23]&#39; ], sex: [ &#39;[1, 1]&#39; ] } 
        } 
     },
     rejectedPlans: [], 
  },
  ......
  ok: 1 
 }

數組索引

數組索引就是對數組字段創(chuàng)建索引,也叫做多值索引,下面為了測試將users集合中的數據增加一部分數組字段.

db.users.updateOne({username:"user1"},{$set:{hobby:["唱歌","籃球","rap"]}})
......

創(chuàng)建數組索引并進行查看其執(zhí)行計劃,注意isMultiKey: true表示使用的索引是多值索引.

db.users.createIndex({hobby:1})
&#39;hobby_1&#39;

db.users.find({hobby:{$elemMatch:{$eq:"釣魚"}}}).explain()
{ 
   queryPlanner: 
   { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        filter: { hobby: { &#39;$elemMatch&#39;: { &#39;$eq&#39;: &#39;釣魚&#39; } } },
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { hobby: 1 },
           indexName: &#39;hobby_1&#39;,
           isMultiKey: true,
           multiKeyPaths: { hobby: [ &#39;hobby&#39; ] },
           ......
           indexBounds: { hobby: [ &#39;["釣魚", "釣魚"]&#39; ] } } 
         },
     rejectedPlans: [] 
  },
  ......
  ok: 1 
}

數組索引相比于其它索引來說索引條目和體積必然呈倍數增加,例如平均每個文檔的hobby數組的size為10,那么這個集合的hobby數組索引的條目數量將是普通索引的10倍.

聯(lián)合數組索引

聯(lián)合數組索引就是含有數組字段的聯(lián)合索引,這種索引不支持一個索引中含有多個數組字段,即一個索引中最多能有一個數組字段,這是為了避免索引條目爆炸式增長,假設一個索引中有兩個數組字段,那么這個索引條目的數量將是普通索引的n*m倍

地理空間索引

在原先的users集合上,增加一些地理信息

for(var i = 0;i < 100000;i++){
    db.users.updateOne(
    {username:"user"+i},
    {
        $set:{
            location:{
                type: "Point",
                coordinates: [100+Math.random() * 4,40+Math.random() * 3]
            }
        }
    });
}

創(chuàng)建一個二維空間索引

db.users.createIndex({location:"2dsphere"})
&#39;location_2dsphere&#39;

//查詢500米內的人
db.users.find({
  location:{
    $near:{
      $geometry:{type:"Point",coordinates:[102,41.5]},
      $maxDistance:500
    }
  }
})

地理空間索引的type有很多包含Ponit(點) | LineString(線) | Polygon(多邊形)

TTL索引

TTL的全拼是time to live,主要是用于過期數據自動刪除,使用這種索引需要在文檔中聲明一個時間類型的字段,然后為這個字段創(chuàng)建TTL索引的時候還需要設置一個expireAfterSeconds過期時間單位為秒,創(chuàng)建完成后MongoDB

  • ?? ? ??? - ?? ???
  • ?? ? ???(????? ???) - ??? ? ???(?????? ???)< /li>

in< ??>MongoDB?? ??? ?? ?? ??? ??? ?? ? ?? ?? ??? ??? ????. ?? ??? | ?? ??? | TTL ??? ?????? ???? ??? ?? ???? ??? ?????. ?? ??????
for(var i = 90000;i < 100000;i++){
    db.users.updateOne(
    {username:"user"+i},
    {
        $set:{
            createdDate:new Date()
        }
    });
}

?? ? ???

???? ? ???? ??? ?????. ?? ???? ?? ??? ?? ??? ??? ????.???? ???? username ??? ???? ?? ? ??? ???? MongoDB? ???? ??? ?????. ? ???? username_1??
db.users.createIndex({createdDate:1},{expireAfterSeconds:60})
&#39;createdDate_1&#39;
?????? ??? ? username ??? ??? ?? ??? IXSCAN</code?? ?????. > ??? ??? ????? ??????<pre class='brush:php;toolbar:false;'>db.runCommand({ collMod:&quot;users&quot;, index:{ keyPattern:{createdDate:1}, expireAfterSeconds:120 } }) { expireAfterSeconds_old: 60, expireAfterSeconds_new: 120, ok: 1 }</pre>?? ??? ???? ?? ?? ?? ??? ??? ???? ?????? ?? ??? ????? ??? ????. ?, <code>users ???? ??? ? ???? age ?? 0-99?? age???. ???? 100?? ?? ?? ????. ?, age ??? ?? ?? 100?? sex? ???? 2?? ?? ???? ??< code>0 | 1, ? sex ??? ??? 2?? ?? ??? ?? ?????. ? ?? ??? ???? ?? ??? ??? ?? ??? ?????. ???? sex ?? ???? ???? ?? ??? ??? ?????. ??? ?? ???? ???? ?? ?? ??? ??? ?????.??
db.users.createIndex({username:1},{partialFilterExpression:{
    age:{$gt:50}
  }})
&#39;username_1&#39;

db.users.find({$and:[{username:"user4"},{age:60}]}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        filter: { age: { &#39;$eq&#39;: 60 } },
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { username: 1 },
           indexName: &#39;username_1&#39;,
           ......
           isPartial: true,
           ......
         } 
     },
     rejectedPlans: [] 
  },
  ......
  ok: 1 
}

?? ???

???? ???? ???? ?? ??? ??? ?????. ??? age<? ???? /code> ? ??? ???? ???? ?????. ? <code>sex ??
for(var i = 5000;i < 10000;i++){
  if(i < 9000){
    db.users.updateOne(
      {username:"user"+i},
      { $set:{email:(120000000+i)+"@qq.email"}}
    )
  }else{
    db.users.updateOne(
      {username:"user"+i},
      { $set:{email:null}}
    )
  }
}
?? ?? ?? ? ? ??? ???? ??? ???? ?? ??? ??? ? ? ???? ????? ????? ??
db.users.find({email:null})
{ 
  _id: ObjectId("61bdc01ba59136670f6536fd"),
  username: &#39;user0&#39;,
  age: 64.41483801726282,
  sex: 0,
  phone: 18468150001,
  location: 
  { 
    type: &#39;Point&#39;,
    coordinates: [ 101.42490900320335, 42.2576650823515 ] 
  } 
}
......

?? ???

???? ???? ?? ? ?????? ?? ?? ??? ???? ???? ????. ??? ???? ??? users ???? ?????. ???? ?? ?? ??? ?????. ??
db.users.createIndex({email:1},{sparse:true});
&#39;email_1&#39;

db.users.find({email:null}).hint({email:1})
{ 
  _id: ObjectId("61bdc12ca59136670f655a25"),
  username: &#39;user9000&#39;,
  age: 94.18397576757012,
  sex: 0,
  phone: 18468159001,
  hobby: [ &#39;釣魚&#39;, &#39;乒乓球&#39; ],
  location: 
  { 
    type: &#39;Point&#39;,
    coordinates: [ 101.25903151863596, 41.38450145025062 ] 
  },
  email: null 
}
......
???? ???? ???? ?? ?? ??? ???. isMultiKey: true? ??? ???? ?? ? ????? ?????. ????? ??? ??? ??? ??????? ???? ???. ?? ?? ? ??? hobby ??? ?? size? 10?? ? ?? ? ???? ?? ??? ?? ?? ?? ???? 10????. ????Associated Array Index???? ?????????????????????????????????????????????????????~?????? ??? ?? ???? ??? ???? ??? ??????. ? ??? ???? ??? ???? ?? ??? ???? ????. ?, ??? ??? ? ?? ???? ?? ???? ?? ????. ???? ?? ?? ?? ?? ??? n*m ??? ?????< h3 data-id="heading-3">???? ???? ?? users ???? ?? ??? ???????
db.blog.insertMany([
  {title:"hello world",content:"mongodb is the best database"},
  {title:"index",content:"efficient data structure"}
])

//創(chuàng)建索引
db.blog.createIndex({title:"text",content:"text"})
&#39;title_text_content_text&#39;
//使用文本索引查詢
db.blog.find({$text:{$search:"hello data"}})
{ 
  _id: ObjectId("61c092268c4037d17827d977"),
  title: &#39;index&#39;,
  content: &#39;efficient data structure&#39; 
},
{ 
  _id: ObjectId("61c092268c4037d17827d976"),
  title: &#39;hello world&#39;,
  content: &#39;mongodb is the best database&#39; 
}
??? ?? ?? ?? ??? ?????
//對title字段創(chuàng)建唯一索引
db.blog.createIndex({title:1},{unique:true})
&#39;title_1&#39;
//插入一個已經存在的title值
db.blog.insertOne({title:"hello world",content:"mongodb is the best database"})
MongoServerError: E11000 duplicate key error collection: mock.blog index: title_1 dup key: { : "hello world" }
//查看一下執(zhí)行計劃,isUnique為true
db.blog.find({"title":"index"}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { title: 1 },
           indexName: &#39;title_1&#39;,
           isMultiKey: false,
           multiKeyPaths: { title: [] },
           isUnique: true,
           ......
         } 
     },
     rejectedPlans: [] 
  },
  .......
  ok: 1 
}
???? ?? ???? type?? ?? Ponit(point)? ???? ???? | LineString(line) | Polygon( ???) ???

TTL ??? Strong>

?? TTL? ?? ??? time to live??, ?? ??? ???? ???? ???? ? ?????. ??? ???? ? ??? ?? TTL ???? ??? ? expireAfterSeconds ?? ?? ??? ?? ???? ???. ??? ??? ? MongoDB? ????? ???? ???? ?????. ??: ??
?? ???TTL??? ?? ??>exp ire AfterSrconds?? ?? - T TL ??? ?? ??>expiredAfterSrconds

MongoDB將會自動將這些文檔刪除,這種索引還有以下這些要求:

  • TTL索引只能有一個字段,沒有聯(lián)合TTL索引
  • TTL不能用于固定集合
  • TTL索引是逐個遍歷后,發(fā)現滿足刪除條件會使用delete函數刪除,效率并不高

首先在我們文檔上增減一個時間字段

for(var i = 90000;i < 100000;i++){
    db.users.updateOne(
    {username:"user"+i},
    {
        $set:{
            createdDate:new Date()
        }
    });
}

創(chuàng)建一個TTL索引并且設定過期時間為60s,待過60s后查詢,會發(fā)現這些數據已經不存在

db.users.createIndex({createdDate:1},{expireAfterSeconds:60})
&#39;createdDate_1&#39;

另外還可以用CollMod命令更改TTL索引的過期時間

db.runCommand({
  collMod:"users",
  index:{
    keyPattern:{createdDate:1},
    expireAfterSeconds:120
  }
})

{ expireAfterSeconds_old: 60, expireAfterSeconds_new: 120, ok: 1 }

條件索引

條件索引也叫部分索引(partial),只對滿足條件的數據進行建立索引.

只對50歲以上的user進行建立username_1索引,查看執(zhí)行計劃會發(fā)現isPartial這個字段會變成true

db.users.createIndex({username:1},{partialFilterExpression:{
    age:{$gt:50}
  }})
&#39;username_1&#39;

db.users.find({$and:[{username:"user4"},{age:60}]}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        filter: { age: { &#39;$eq&#39;: 60 } },
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { username: 1 },
           indexName: &#39;username_1&#39;,
           ......
           isPartial: true,
           ......
         } 
     },
     rejectedPlans: [] 
  },
  ......
  ok: 1 
}

稀疏索引

一般的索引會根據某個字段為整個集合創(chuàng)建一個索引,即使某個文檔不存這個字段,那么這個索引會把這個文檔的這個字段當作null建立在索引當中.

稀疏索引不會對文檔中不存在的字段建立索引,如果這個字段存在但是為null時,則會創(chuàng)建索引.

下面給users集合中的部分數據創(chuàng)建稀疏索引

for(var i = 5000;i < 10000;i++){
  if(i < 9000){
    db.users.updateOne(
      {username:"user"+i},
      { $set:{email:(120000000+i)+"@qq.email"}}
    )
  }else{
    db.users.updateOne(
      {username:"user"+i},
      { $set:{email:null}}
    )
  }
}

當不建立索引使用{email:null}條件進行查詢時,我們會發(fā)現查出來的文檔包含沒有email字段的文檔

db.users.find({email:null})
{ 
  _id: ObjectId("61bdc01ba59136670f6536fd"),
  username: &#39;user0&#39;,
  age: 64.41483801726282,
  sex: 0,
  phone: 18468150001,
  location: 
  { 
    type: &#39;Point&#39;,
    coordinates: [ 101.42490900320335, 42.2576650823515 ] 
  } 
}
......

然后對email這個字段創(chuàng)建一個稀疏索引使用{email:null}條件進行查詢,則發(fā)現查詢來的文檔全部是email字段存在且為null的文檔.

db.users.createIndex({email:1},{sparse:true});
&#39;email_1&#39;

db.users.find({email:null}).hint({email:1})
{ 
  _id: ObjectId("61bdc12ca59136670f655a25"),
  username: &#39;user9000&#39;,
  age: 94.18397576757012,
  sex: 0,
  phone: 18468159001,
  hobby: [ &#39;釣魚&#39;, &#39;乒乓球&#39; ],
  location: 
  { 
    type: &#39;Point&#39;,
    coordinates: [ 101.25903151863596, 41.38450145025062 ] 
  },
  email: null 
}
......

文本索引

文本索引將建立索引的文檔字段先進行分詞再進行檢索,但是目前還不支持中文分詞.

下面增加兩個文本字段,創(chuàng)建一個聯(lián)合文本索引

db.blog.insertMany([
  {title:"hello world",content:"mongodb is the best database"},
  {title:"index",content:"efficient data structure"}
])

//創(chuàng)建索引
db.blog.createIndex({title:"text",content:"text"})
&#39;title_text_content_text&#39;
//使用文本索引查詢
db.blog.find({$text:{$search:"hello data"}})
{ 
  _id: ObjectId("61c092268c4037d17827d977"),
  title: &#39;index&#39;,
  content: &#39;efficient data structure&#39; 
},
{ 
  _id: ObjectId("61c092268c4037d17827d976"),
  title: &#39;hello world&#39;,
  content: &#39;mongodb is the best database&#39; 
}

唯一索引

唯一索引就是在建立索引地字段上不能出現重復元素,除了單字段唯一索引還有聯(lián)合唯一索引以及數組唯一索引(即數組之間不能有元素交集 )

//對title字段創(chuàng)建唯一索引
db.blog.createIndex({title:1},{unique:true})
&#39;title_1&#39;
//插入一個已經存在的title值
db.blog.insertOne({title:"hello world",content:"mongodb is the best database"})
MongoServerError: E11000 duplicate key error collection: mock.blog index: title_1 dup key: { : "hello world" }
//查看一下執(zhí)行計劃,isUnique為true
db.blog.find({"title":"index"}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { title: 1 },
           indexName: &#39;title_1&#39;,
           isMultiKey: false,
           multiKeyPaths: { title: [] },
           isUnique: true,
           ......
         } 
     },
     rejectedPlans: [] 
  },
  .......
  ok: 1 
}

相關視頻教程推薦:《MongoDB教程

? ??? MongoDB? ??? ??? ??? ?? ???? ?????.? ?? ?????. ??? ??? PHP ??? ????? ?? ?? ??? ?????!

? ????? ??
? ?? ??? ????? ???? ??? ??????, ???? ?????? ????. ? ???? ?? ???? ?? ??? ?? ????. ???? ??? ???? ???? ??? ?? admin@php.cn?? ?????.

? AI ??

Undresser.AI Undress

Undresser.AI Undress

???? ?? ??? ??? ?? AI ?? ?

AI Clothes Remover

AI Clothes Remover

???? ?? ???? ??? AI ?????.

Video Face Swap

Video Face Swap

??? ??? AI ?? ?? ??? ???? ?? ???? ??? ?? ????!

???

??? ??

???++7.3.1

???++7.3.1

???? ?? ?? ?? ???

SublimeText3 ??? ??

SublimeText3 ??? ??

??? ??, ???? ?? ????.

???? 13.0.1 ???

???? 13.0.1 ???

??? PHP ?? ?? ??

???? CS6

???? CS6

??? ? ?? ??

SublimeText3 Mac ??

SublimeText3 Mac ??

? ??? ?? ?? ?????(SublimeText3)

???

??? ??

?? ????
1742
16
Cakephp ????
1596
56
??? ????
1536
28
PHP ????
1396
31
???
Composer? ???? ?? ???? ???? ?????? : Andres-Montanez/?? ??-?? Composer? ???? ?? ???? ???? ?????? : Andres-Montanez/?? ??-?? Apr 18, 2025 am 11:48 AM

?? ??? ? ???? ??? ? ??? ??? ??????. ????? ??? ? ?? ?? ??? ???? ??. ???? ??? ?? ????? ????? ??? ????? ???? ??? ????? ??? ?????. ?? ???? ???? ???? ????? ???? ???? ???? ????? ??????. ????? Composer? ?? Andres-Montanez/Residations-Bundle? ???? ??? ?????? ??? ?? ???? ??? ?? ?? ?????. ?? ??? ?? ???? ?? ? ????.

Centos?? Gitlab ? ??????? ???? ?? Centos?? Gitlab ? ??????? ???? ?? Apr 14, 2025 pm 04:48 PM

CentOS ???? GitLab ?????? ?? ??? ??? ??????? ???? ?? GitLab? ????? ???? ? ??? ?????. Gitlab? MySQL, PostgreSQL ? MongoDB? ??? ??? ??????? ?????. ? ??? ??? ??????? ???? ???? ??? ??? ?????. ?????? ?? ?? ?? MySQL : ?? ???? RDBMS (Relational Database Management System). PostgreSQL : ??? ?? ?? RDBM? ??? ?? ? ?? ??? ???? ?? ??? ??? ???? ? ?????. MongoDB : ???? NOSQL ??????, ?? ??? ?????

Mongodb vs. Oracle : ?? ??? ?? Mongodb vs. Oracle : ?? ??? ?? Apr 16, 2025 am 12:01 AM

MongoDB? ??? ??? ???? ???? ? ???? Oracle? ?? ???? ??? ?????? ??? ?? ????? ?????. 1. MongoDB? ??? ?? ??? ??? ??? ???? ???? ?????. 2. Oracle? ???? ??? ???? ???? ?? ???? ?????. 3. MongoDB? ?? ??? ???? Oracle? ??? ??? ?????. 4. MongoDB? ?? ??? ?? ????? ????? Oracle? ?????? ??? ?? ????? ?????.

Mongodb vs. Oracle : ??? ?? ??? ?????? ?? Mongodb vs. Oracle : ??? ?? ??? ?????? ?? Apr 22, 2025 am 12:10 AM

MongoDB? ????? ?? ??? ? ?? ?? ? ?? ??? ??? ?? Oracle? ??? ??? ???? ??? ????? ?????. 1. MongoDB? ?? ??? ? ?? ???? ??? ??? ???? ???? ???? ?????. 2. Oracle ??? ? ??? ??? ??? ???? ???? ?? ??? ?????. 3. MongoDB? ??? ?? ???? ???, RAC? ?? ???? ??? ???????. 4. MongoDB? ?? ?? ??? ?? ? Oracle? ?? ?? ??? ??? ??? ?????.

Centos Mongodb ?? ??? ?????? Centos Mongodb ?? ??? ?????? Apr 14, 2025 pm 04:51 PM

CentOS ??? ??? MongoDB ???? ?? ??? ?? ??? ??? ??? CentOS ????? MongoDB ??? ?????? ??? ??? ??? ???? ??? ?? ? ???? ???? ?? ? ????. Docker ???? ???? ?? ??, ??? ??? ??, ?? ???? ?? ? ?? ???? ??? ?? ?? ????? ?? ??? ?????. ?? ?? : MongoDump ??? ???? Manual ?? ??? ?????? (? : Mongodump-HlocalHost : 27017-U username-P password-d ?????? ?? -o/?? ????? ??? ??? ??????? ??? ? ?? ???? ??? ?? ????? ???????.

MongoDB?? ???? ???? ?? MongoDB?? ???? ???? ?? Apr 12, 2025 am 08:51 AM

MongoDB ???? ????? ?? ??? ?????. 1. ??? ???? ??? ???? ????. 2. ????? ??? ??? ?? ? ??????? ??????. 3. CreateUser ??? ???? ???? ???? ??? ?? ? ?????? ??? ??? ??????. 4. GetUsers ??? ???? ?? ? ???? ??????. 5. ????? ?? ???? ?? ?? ??? ????? ??? ??? ?????.

MongoDB? ???? ?? MongoDB? ???? ?? Apr 12, 2025 am 08:39 AM

Debian MongoDB?? ???? ????? ?? Debian MongoDB?? ???? ????? ?? Apr 12, 2025 pm 08:03 PM

??? ????? MongoDB ??????? ?????? ?? ??? ?? ?????. 1 ?? : ?? MongoDB ?? ?? Debian ???? MongoDB? ???? ??? ??????. ??? ?? ?? ????? ?? MongoDB ??? ?????? : https://docs.mongodb.com/manual/tutorial/install-mongodb-ondodb-on-debian/step 2 : ??? ? ?? ?? ??? ?? ???? ??? ????.

See all articles