国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

首頁(yè) 後端開(kāi)發(fā) Python教學(xué) 如何從我在Kaggle上的數(shù)據(jù)中創(chuàng)建模型

如何從我在Kaggle上的數(shù)據(jù)中創(chuàng)建模型

Jan 26, 2025 am 10:12 AM

本教學(xué)示範(fàn)如何使用FastAI庫(kù)訓(xùn)練一個(gè)影像分類模型,區(qū)分貓和狗。 我們將逐步進(jìn)行,從資料準(zhǔn)備到模型訓(xùn)練和使用。

步驟一:資料準(zhǔn)備

  1. 影像搜尋函數(shù): 首先,我們定義一個(gè)函數(shù)用於從DuckDuckGo搜尋引擎搜尋影像。函數(shù)接受關(guān)鍵字和最大圖像數(shù)量作為輸入,並傳回圖像URL列表。
import os
iskaggle = os.environ.get('KAGGLE_KERNEL_RUN_TYPE', '')

if iskaggle:
    !pip install -Uqq fastai 'duckduckgo_search>=6.2'

from duckduckgo_search import DDGS
from fastcore.all import *
import time, json
def search_images(keywords, max_images=200):
    return L(DDGS().images(keywords, max_results=max_images)).itemgot('image')
  1. 搜尋和下載範(fàn)例圖片: 我們分別搜尋“dog photos”和“cat photos”,下載一張範(fàn)例圖片。
urls = search_images('dog photos', max_images=1)
from fastdownload import download_url
dest = 'dog.jpg'
download_url(urls[0], dest, show_progress=False)
from fastai.vision.all import *
im = Image.open(dest)
im.to_thumb(256,256)

How to create a model from my data on Kaggle

同樣地,我們下載一張貓的圖片:

download_url(search_images('cat photos', max_images=1)[0], 'cat.jpg', show_progress=False)
Image.open('cat.jpg').to_thumb(256,256)

How to create a model from my data on Kaggle

  1. 批次下載和預(yù)處理圖像: 我們下載多張貓和狗的圖片,並將其分別保存到dog_or_not/dogdog_or_not/cat資料夾中。 同時(shí),我們調(diào)整圖像大小以提高效率。
searches = 'dog', 'cat'
path = Path('dog_or_not')

for o in searches:
    dest = (path/o)
    dest.mkdir(exist_ok=True, parents=True)
    download_images(dest, urls=search_images(f'{o} photo'))
    time.sleep(5)
    resize_images(path/o, max_size=400, dest=path/o)
  1. 清理無(wú)效影像: 刪除下載失敗或損壞的圖片。
failed = verify_images(get_image_files(path))
failed.map(Path.unlink)

步驟二:模型訓(xùn)練

  1. 建立DataLoader: 使用DataBlock建立DataLoader,用於載入和處理影像資料。
dls = DataBlock(
    blocks=(ImageBlock, CategoryBlock),
    get_items=get_image_files,
    splitter=RandomSplitter(valid_pct=0.2, seed=42),
    get_y=parent_label,
    item_tfms=[Resize(192, method='squish')]
).dataloaders(path, bs=32)
dls.show_batch(max_n=6)

How to create a model from my data on Kaggle

  1. 微調(diào)預(yù)訓(xùn)練模型: 使用預(yù)先訓(xùn)練的ResNet50模型,並在我們的資料集上進(jìn)行微調(diào)。
learn = vision_learner(dls, resnet50, metrics=error_rate)
learn.fine_tune(3)

How to create a model from my data on Kaggle

步驟三:模型使用

  1. 預(yù)測(cè): 使用訓(xùn)練好的模型預(yù)測(cè)之前下載的範(fàn)例狗圖片。
is_dog,_,probs = learn.predict(PILImage.create('dog.jpg'))
print(f'This is a: {is_dog}.')
print(f"Probability it's a dog: {probs[1]:.4f}")

輸出結(jié)果:

This is a: dog. Probability it's a dog: 1.0000

這個(gè)教學(xué)展示如何利用FastAI快速建立一個(gè)簡(jiǎn)單的影像分類模型。 記住,模型的準(zhǔn)確性取決於訓(xùn)練資料的品質(zhì)和數(shù)量。

以上是如何從我在Kaggle上的數(shù)據(jù)中創(chuàng)建模型的詳細(xì)內(nèi)容。更多資訊請(qǐng)關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本網(wǎng)站聲明
本文內(nèi)容由網(wǎng)友自願(yuàn)投稿,版權(quán)歸原作者所有。本站不承擔(dān)相應(yīng)的法律責(zé)任。如發(fā)現(xiàn)涉嫌抄襲或侵權(quán)的內(nèi)容,請(qǐng)聯(lián)絡(luò)admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費(fèi)脫衣圖片

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅(qū)動(dòng)的應(yīng)用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費(fèi)的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費(fèi)的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強(qiáng)大的PHP整合開(kāi)發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺(jué)化網(wǎng)頁(yè)開(kāi)發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級(jí)程式碼編輯軟體(SublimeText3)

Python的UNITDEST或PYTEST框架如何促進(jìn)自動(dòng)測(cè)試? Python的UNITDEST或PYTEST框架如何促進(jìn)自動(dòng)測(cè)試? Jun 19, 2025 am 01:10 AM

Python的unittest和pytest是兩種廣泛使用的測(cè)試框架,它們都簡(jiǎn)化了自動(dòng)化測(cè)試的編寫、組織和運(yùn)行。 1.二者均支持自動(dòng)發(fā)現(xiàn)測(cè)試用例並提供清晰的測(cè)試結(jié)構(gòu):unittest通過(guò)繼承TestCase類並以test\_開(kāi)頭的方法定義測(cè)試;pytest則更為簡(jiǎn)潔,只需以test\_開(kāi)頭的函數(shù)即可。 2.它們都內(nèi)置斷言支持:unittest提供assertEqual、assertTrue等方法,而pytest使用增強(qiáng)版的assert語(yǔ)句,能自動(dòng)顯示失敗詳情。 3.均具備處理測(cè)試準(zhǔn)備與清理的機(jī)制:un

如何將Python用於數(shù)據(jù)分析和與Numpy和Pandas等文庫(kù)進(jìn)行操作? 如何將Python用於數(shù)據(jù)分析和與Numpy和Pandas等文庫(kù)進(jìn)行操作? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisionduetonumpyandpandas.1)numpyExccelSatnumericalComputationswithFast,多dimensionalArraysAndRaysAndOrsAndOrsAndOffectorizedOperationsLikenp.sqrt()

什麼是動(dòng)態(tài)編程技術(shù),如何在Python中使用它們? 什麼是動(dòng)態(tài)編程技術(shù),如何在Python中使用它們? Jun 20, 2025 am 12:57 AM

動(dòng)態(tài)規(guī)劃(DP)通過(guò)將復(fù)雜問(wèn)題分解為更簡(jiǎn)單的子問(wèn)題並存儲(chǔ)其結(jié)果以避免重複計(jì)算,來(lái)優(yōu)化求解過(guò)程。主要方法有兩種:1.自頂向下(記憶化):遞歸分解問(wèn)題,使用緩存存儲(chǔ)中間結(jié)果;2.自底向上(表格化):從基礎(chǔ)情況開(kāi)始迭代構(gòu)建解決方案。適用於需要最大/最小值、最優(yōu)解或存在重疊子問(wèn)題的場(chǎng)景,如斐波那契數(shù)列、背包問(wèn)題等。在Python中,可通過(guò)裝飾器或數(shù)組實(shí)現(xiàn),並應(yīng)注意識(shí)別遞推關(guān)係、定義基準(zhǔn)情況及優(yōu)化空間複雜度。

如何使用__ITER__和__NEXT __在Python中實(shí)現(xiàn)自定義迭代器? 如何使用__ITER__和__NEXT __在Python中實(shí)現(xiàn)自定義迭代器? Jun 19, 2025 am 01:12 AM

要實(shí)現(xiàn)自定義迭代器,需在類中定義__iter__和__next__方法。 ①__iter__方法返回迭代器對(duì)象自身,通常為self,以兼容for循環(huán)等迭代環(huán)境;②__next__方法控制每次迭代的值,返回序列中的下一個(gè)元素,當(dāng)無(wú)更多項(xiàng)時(shí)應(yīng)拋出StopIteration異常;③需正確跟蹤狀態(tài)並設(shè)置終止條件,避免無(wú)限循環(huán);④可封裝複雜邏輯如文件行過(guò)濾,同時(shí)注意資源清理與內(nèi)存管理;⑤對(duì)簡(jiǎn)單邏輯可考慮使用生成器函數(shù)yield替代,但需結(jié)合具體場(chǎng)景選擇合適方式。

Python編程語(yǔ)言及其生態(tài)系統(tǒng)的新興趨勢(shì)或未來(lái)方向是什麼? Python編程語(yǔ)言及其生態(tài)系統(tǒng)的新興趨勢(shì)或未來(lái)方向是什麼? Jun 19, 2025 am 01:09 AM

Python的未來(lái)趨勢(shì)包括性能優(yōu)化、更強(qiáng)的類型提示、替代運(yùn)行時(shí)的興起及AI/ML領(lǐng)域的持續(xù)增長(zhǎng)。首先,CPython持續(xù)優(yōu)化,通過(guò)更快的啟動(dòng)時(shí)間、函數(shù)調(diào)用優(yōu)化及擬議中的整數(shù)操作改進(jìn)提升性能;其次,類型提示深度集成至語(yǔ)言與工具鏈,增強(qiáng)代碼安全性與開(kāi)發(fā)體驗(yàn);第三,PyScript、Nuitka等替代運(yùn)行時(shí)提供新功能與性能優(yōu)勢(shì);最後,AI與數(shù)據(jù)科學(xué)領(lǐng)域持續(xù)擴(kuò)張,新興庫(kù)推動(dòng)更高效的開(kāi)發(fā)與集成。這些趨勢(shì)表明Python正不斷適應(yīng)技術(shù)變化,保持其領(lǐng)先地位。

如何使用插座在Python中執(zhí)行網(wǎng)絡(luò)編程? 如何使用插座在Python中執(zhí)行網(wǎng)絡(luò)編程? Jun 20, 2025 am 12:56 AM

Python的socket模塊是網(wǎng)絡(luò)編程的基礎(chǔ),提供低級(jí)網(wǎng)絡(luò)通信功能,適用於構(gòu)建客戶端和服務(wù)器應(yīng)用。要設(shè)置基本TCP服務(wù)器,需使用socket.socket()創(chuàng)建對(duì)象,綁定地址和端口,調(diào)用.listen()監(jiān)聽(tīng)連接,並通過(guò).accept()接受客戶端連接。構(gòu)建TCP客戶端需創(chuàng)建socket對(duì)像後調(diào)用.connect()連接服務(wù)器,再使用.sendall()發(fā)送數(shù)據(jù)和??.recv()接收響應(yīng)。處理多個(gè)客戶端可通過(guò)1.線程:每次連接啟動(dòng)新線程;2.異步I/O:如asyncio庫(kù)實(shí)現(xiàn)無(wú)阻塞通信。注意事

如何在Python中切片列表? 如何在Python中切片列表? Jun 20, 2025 am 12:51 AM

Python列表切片的核心答案是掌握[start:end:step]語(yǔ)法並理解其行為。 1.列表切片的基本格式為list[start:end:step],其中start是起始索引(包含)、end是結(jié)束索引(不包含)、step是步長(zhǎng);2.省略start默認(rèn)從0開(kāi)始,省略end默認(rèn)到末尾,省略step默認(rèn)為1;3.獲取前n項(xiàng)用my_list[:n],獲取後n項(xiàng)用my_list[-n:];4.使用step可跳過(guò)元素,如my_list[::2]取偶數(shù)位,負(fù)step值可反轉(zhuǎn)列表;5.常見(jiàn)誤區(qū)包括end索引不

Python類中的多態(tài)性 Python類中的多態(tài)性 Jul 05, 2025 am 02:58 AM

多態(tài)是Python面向?qū)ο缶幊讨械暮诵母拍?,指“一種接口,多種實(shí)現(xiàn)”,允許統(tǒng)一處理不同類型的對(duì)象。 1.多態(tài)通過(guò)方法重寫實(shí)現(xiàn),子類可重新定義父類方法,如Animal類的speak()方法在Dog和Cat子類中有不同實(shí)現(xiàn)。 2.多態(tài)的實(shí)際用途包括簡(jiǎn)化代碼結(jié)構(gòu)、增強(qiáng)可擴(kuò)展性,例如圖形繪製程序中統(tǒng)一調(diào)用draw()方法,或遊戲開(kāi)發(fā)中處理不同角色的共同行為。 3.Python實(shí)現(xiàn)多態(tài)需滿足:父類定義方法,子類重寫該方法,但不要求繼承同一父類,只要對(duì)象實(shí)現(xiàn)相同方法即可,這稱為“鴨子類型”。 4.注意事項(xiàng)包括保持方

See all articles