Pydantic is a data validation and settings management library for Python. It uses Python type hints to validate and parse data, ensuring that your code works with properly structured and typed data. By leveraging Python’s dataclass-like model structure, Pydantic makes it easy to define schemas for complex data and automatically validate and serialize/deserialize data in a clean, Pythonic way. Let's explore the main features:
Data Validation
Automatically validate input data against a schema using Python's type hints.
from pydantic import BaseModel, ValidationError class User(BaseModel): id: int name: str email: str # Valid input user = User(id=1, name="John Doe", email="john@example.com") print(user) # Invalid input try: user = User(id="not-an-integer", name="Jane", email="jane@example.com") except ValidationError as err: print(err)
Whenever you want to define data model, use pydantic.BaseModel!
Function Validation
Pydantic provides powerful tools for validating not just data models but also the input and output of functions. This is achieved using the @validate_call decorator, allowing you to enforce strict data validation for function arguments and return values. If the provided arguments or return type don’t match the expected types, a ValidationError is raised.
from pydantic import validate_call @validate_call def greet(name: str, age: int) -> str: return f"Hello {name}, you are {age} years old." # Valid input print(greet("Alice", 30)) # Output: Hello Alice, you are 30 years old. # Invalid input try: greet("Bob", "not-a-number") except Exception as e: print(e)
By enabling the validate_return flag in @validate_call, Pydantic will also validate the return value of the function against its annotated return type. This ensures the function adheres to the expected output schema.
from pydantic import validate_call @validate_call(validate_return=True) def calculate_square(number: int) -> int: return number ** 2 # Correct return type # Valid input and return print(calculate_square(4)) # Output: 16 # Invalid return value @validate_call(validate_return=True) def broken_square(number: int) -> int: return str(number ** 2) # Incorrect return type try: broken_square(4) except Exception as e: print(e)
Parsing
Pydantic can parse complex nested structures, including JSON data, into model objects.
from pydantic import BaseModel from typing import List class Item(BaseModel): name: str price: float class Order(BaseModel): items: List[Item] total: float # JSON-like data data = { "items": [ {"name": "Apple", "price": 1.2}, {"name": "Banana", "price": 0.8} ], "total": 2.0 } order = Order(**data) print(order) # items=[Item(name='Apple', price=1.2), Item(name='Banana', price=0.8)] total=2.0
Serialization and Deserialization
Pydantic models can be serialized into JSON or dictionaries and reconstructed back.
from pydantic import BaseModel class User(BaseModel): id: int name: str email: str # Create a model instance user = User(id=1, name="Alice", email="alice@example.com") # Serialize to dictionary and JSON user_dict = user.model_dump() user_json = user.model_dump(mode='json') print("Dictionary:", user_dict) print("JSON:", user_json) # Deserialize back to the model new_user = User.model_validate(user_json) print("Parsed User:", new_user)
Flexible Validation
Data validation is not force-type validation. For example, if you define a model with id, due_date, and priority fields of types int, bool, and datetime respectively, you can pass:
- numerical string as id
- ISO-8601, UTC or strings of the other date formats as due_date
- 'yes'/'no', 'on'/'off', 'true'/'false', 1/0 etc. as priority
from sensei import APIModel from datetime import datetime class Task(APIModel): id: int due_date: datetime priority: bool task = Task(due_date='2024-10-15T15:30:00',> <p>The result will be<br> </p> <pre class="brush:php;toolbar:false">Task(id=1, due_date=datetime.datetime(2024, 10, 15, 15, 30), priority=True)
Custom Validation
You can also define custom validation logic in your model using validators. They allow you to apply more complex validation rules that cannot be easily expressed using the built-in types or field constraints. Validator is defined through the field_validator decorator or Field object. You can pass one or more field names to field_validator, to determine what fields will use this validator, or '*' to apply validator for every field.
from typing import Any from pydantic import Field, field_validator, EmailStr, BaseModel class User(BaseModel): id: int username: str = Field(pattern=r'^w $') email: EmailStr age: int = Field(18, ge=14) is_active: bool = True roles: list[str] # Define validator executed 'before' internal parsing @field_validator('roles', mode='before') def _validate_roles(cls, value: Any): return value.split(',') if isinstance(value, str) else value user = User(id=1, username='john', email='john@example.com', roles='student,singer') print(user) #> <h2> Open-source Projects </h2> <p>There are a lot of open-source projects powered by Pydantic. Let's explore the best of them:</p> <h3> FastAPI </h3> <p>One of the most prominent use cases of Pydantic is in FastAPI, a modern web framework for building APIs with Python. FastAPI uses Pydantic models extensively for request body validation, query parameters, and response schemas.</p>
- Source: https://github.com/fastapi/fastapi
- Docs: https://fastapi.tiangolo.com
Sensei
While FastAPI is designed for building APIs, Sensei is designed for wrapping these APIs quickly and easy. API Clients powered by Sensei ensure users they will get relevant data models and will not get confusing errors.
- Source: https://github.com/CrocoFactory/sensei
- Docs: https://sensei.crocofactory.dev
SQLModel and Typer
SQLModel and Typer are two remarkable projects developed by Sebastián Ramírez, the creator of FastAPI.
SQLModel is a library designed to streamline database interactions in Python applications. Built on top of SQLAlchemy and Pydantic, SQLModel combines the power of an ORM with the convenience of data validation and serialization.
- Source: https://github.com/fastapi/sqlmodel
- Docs: https://sqlmodel.tiangolo.com
Typer is a framework for creating command-line interface (CLI) applications using Python. It simplifies the process by using Python's type hints to automatically generate user-friendly CLI commands and help text.
- Source: https://github.com/fastapi/typer
- Docs: https://typer.tiangolo.com
The above is the detailed content of Pydantic: The end of manual validations! ?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Web application security needs to be paid attention to. Common vulnerabilities on Python websites include XSS, SQL injection, CSRF and file upload risks. For XSS, the template engine should be used to automatically escape, filter rich text HTML and set CSP policies; to prevent SQL injection, parameterized query or ORM framework, and verify user input; to prevent CSRF, CSRFTToken mechanism must be enabled and sensitive operations must be confirmed twice; file upload vulnerabilities must be used to restrict types, rename files, and prohibit execution permissions. Following the norms and using mature tools can effectively reduce risks, and safety needs continuous attention and testing.

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

Python's default parameters are only initialized once when defined. If mutable objects (such as lists or dictionaries) are used as default parameters, unexpected behavior may be caused. For example, when using an empty list as the default parameter, multiple calls to the function will reuse the same list instead of generating a new list each time. Problems caused by this behavior include: 1. Unexpected sharing of data between function calls; 2. The results of subsequent calls are affected by previous calls, increasing the difficulty of debugging; 3. It causes logical errors and is difficult to detect; 4. It is easy to confuse both novice and experienced developers. To avoid problems, the best practice is to set the default value to None and create a new object inside the function, such as using my_list=None instead of my_list=[] and initially in the function

Deploying Python applications to production environments requires attention to stability, security and maintenance. First, use Gunicorn or uWSGI to replace the development server to support concurrent processing; second, cooperate with Nginx as a reverse proxy to improve performance; third, configure the number of processes according to the number of CPU cores to optimize resources; fourth, use a virtual environment to isolate dependencies and freeze versions to ensure consistency; fifth, enable detailed logs, integrate monitoring systems, and set up alarm mechanisms to facilitate operation and maintenance; sixth, avoid root permissions to run applications, close debugging information, and configure HTTPS to ensure security; finally, automatic deployment is achieved through CI/CD tools to reduce human errors.

Python works well with other languages ??and systems in microservice architecture, the key is how each service runs independently and communicates effectively. 1. Using standard APIs and communication protocols (such as HTTP, REST, gRPC), Python builds APIs through frameworks such as Flask and FastAPI, and uses requests or httpx to call other language services; 2. Using message brokers (such as Kafka, RabbitMQ, Redis) to realize asynchronous communication, Python services can publish messages for other language consumers to process, improving system decoupling, scalability and fault tolerance; 3. Expand or embed other language runtimes (such as Jython) through C/C to achieve implementation

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

Python's list, dictionary and collection derivation improves code readability and writing efficiency through concise syntax. They are suitable for simplifying iteration and conversion operations, such as replacing multi-line loops with single-line code to implement element transformation or filtering. 1. List comprehensions such as [x2forxinrange(10)] can directly generate square sequences; 2. Dictionary comprehensions such as {x:x2forxinrange(5)} clearly express key-value mapping; 3. Conditional filtering such as [xforxinnumbersifx%2==0] makes the filtering logic more intuitive; 4. Complex conditions can also be embedded, such as combining multi-condition filtering or ternary expressions; but excessive nesting or side-effect operations should be avoided to avoid reducing maintainability. The rational use of derivation can reduce
