How to Create C Objects from a String Containing Their Class Name?
Dec 20, 2024 am 01:33 AMHow to Instantiate Objects from a String Containing Their Class Name?
In the given code, a BaseFactory class creates objects of different Derived classes based on a string representing their class name. However, the factory requires manual addition of if statements for each possible Derived class. One may wonder if there's an alternative to this verbose approach, similar to C#'s Reflection feature.
unfortunately there is no automated mechanism
Unfortunately, C does not have a mechanism for automatic creation objects of types specified at runtime. However, it is possible to do the mapping yourself:
Type mapping
You can create a map that stores, for each class name, a function that creates an object of that class:
template<typename T> Base * createInstance() { return new T; } typedef std::map<std::string, Base*(*)()> map_type; map_type map; map["DerivedA"] = &createInstance<DerivedA>; map["DerivedB"] = &createInstance<DerivedB>;
Then you can instantiate the objects too help:
return map[some_string]();
Type registration
An alternative solution is to allow types to register themselves:
// w base.hpp: template<typename T> Base * createT() { return new T; } struct BaseFactory { typedef std::map<std::string, Base*(*)()> map_type; static Base * createInstance(std::string const& s) { map_type::iterator it = getMap()->find(s); if(it == getMap()->end()) return 0; return it->second(); } protected: static map_type * getMap() { // nigdy nie usuwane (istnieje do zakończenia programu) // poniewa? nie mo?emy zagwarantowa? poprawnej kolejno?ci usuwania if(!map) { map = new map_type; } return map; } private: static map_type * map; }; template<typename T> struct DerivedRegister : BaseFactory { DerivedRegister(std::string const& s) { getMap()->insert(std::make_pair(s, &createT<T>)); } }; // w derivedb.hpp class DerivedB { ...; private: static DerivedRegister<DerivedB> reg; }; // w derivedb.cpp: DerivedRegister<DerivedB> DerivedB::reg("DerivedB");
You can also define macros for type registration :
#define REGISTER_DEC_TYPE(NAME) \ static DerivedRegister<NAME> reg #define REGISTER_DEF_TYPE(NAME) \ DerivedRegister<NAME> NAME::reg(#NAME)
For types that do not share a common base class, you can use the variant boost::variant as the return type of function:
typedef boost::variant<Foo, Bar, Baz> variant_type; template<typename T> variant_type createInstance() { return variant_type(T()); } typedef std::map<std::string, variant_type (*)()> map_type;
The above is the detailed content of How to Create C Objects from a String Containing Their Class Name?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Yes, function overloading is a polymorphic form in C, specifically compile-time polymorphism. 1. Function overload allows multiple functions with the same name but different parameter lists. 2. The compiler decides which function to call at compile time based on the provided parameters. 3. Unlike runtime polymorphism, function overloading has no extra overhead at runtime, and is simple to implement but less flexible.

The destructor in C is used to free the resources occupied by the object. 1) They are automatically called at the end of the object's life cycle, such as leaving scope or using delete. 2) Resource management, exception security and performance optimization should be considered during design. 3) Avoid throwing exceptions in the destructor and use RAII mode to ensure resource release. 4) Define a virtual destructor in the base class to ensure that the derived class objects are properly destroyed. 5) Performance optimization can be achieved through object pools or smart pointers. 6) Keep the destructor thread safe and concise, and focus on resource release.

C has two main polymorphic types: compile-time polymorphism and run-time polymorphism. 1. Compilation-time polymorphism is implemented through function overloading and templates, providing high efficiency but may lead to code bloating. 2. Runtime polymorphism is implemented through virtual functions and inheritance, providing flexibility but performance overhead.

Implementing polymorphism in C can be achieved through the following steps: 1) use inheritance and virtual functions, 2) define a base class containing virtual functions, 3) rewrite these virtual functions by derived classes, and 4) call these functions using base class pointers or references. Polymorphism allows different types of objects to be treated as objects of the same basis type, thereby improving code flexibility and maintainability.

Yes, polymorphisms in C are very useful. 1) It provides flexibility to allow easy addition of new types; 2) promotes code reuse and reduces duplication; 3) simplifies maintenance, making the code easier to expand and adapt to changes. Despite performance and memory management challenges, its advantages are particularly significant in complex systems.

C destructorscanleadtoseveralcommonerrors.Toavoidthem:1)Preventdoubledeletionbysettingpointerstonullptrorusingsmartpointers.2)Handleexceptionsindestructorsbycatchingandloggingthem.3)Usevirtualdestructorsinbaseclassesforproperpolymorphicdestruction.4

Polymorphisms in C are divided into runtime polymorphisms and compile-time polymorphisms. 1. Runtime polymorphism is implemented through virtual functions, allowing the correct method to be called dynamically at runtime. 2. Compilation-time polymorphism is implemented through function overloading and templates, providing higher performance and flexibility.

C polymorphismincludescompile-time,runtime,andtemplatepolymorphism.1)Compile-timepolymorphismusesfunctionandoperatoroverloadingforefficiency.2)Runtimepolymorphismemploysvirtualfunctionsforflexibility.3)Templatepolymorphismenablesgenericprogrammingfo
