


How can I generate truly uniform random numbers within a specific range in C ?
Dec 25, 2024 pm 03:58 PMGenerate Random Numbers Uniformly Over an Entire Range
To generate random numbers within a specified interval [min, max] uniformly, the following guidelines should be considered:
Avoid Using rand() and Modulo Operator
Using rand() and the modulo operator, as demonstrated in the given code snippet, may not produce uniformly distributed random numbers. It depends on the range and the value of RAND_MAX.
C 11 Uniform Integer Distribution
With C 11, you can utilize std::uniform_int_distribution to generate random numbers within a range:
#include <iostream> #include <random> int main() { const int range_from = 0; const int range_to = 1000; std::random_device rand_dev; std::mt19937 generator(rand_dev()); std::uniform_int_distribution<int> distr(range_from, range_to); std::cout << distr(generator) << '\n'; }
Other Random Number Generators
C 11 provides additional random number generators with various distributions, such as Bernoulli, Poisson, and normal.
Shuffling Containers
To shuffle a container randomly, use std::shuffle:
#include <iostream> #include <random> #include <vector> int main() { std::vector<int> vec = {4, 8, 15, 16, 23, 42}; std::random_device random_dev; std::mt19937 generator(random_dev()); std::shuffle(vec.begin(), vec.end(), generator); std::for_each(vec.begin(), vec.end(), [](auto i){std::cout << i << '\n';}); }
Boost.Random
If C 11 is not available, you can use Boost.Random, which offers an interface similar to C 11's random number generation facilities.
The above is the detailed content of How can I generate truly uniform random numbers within a specific range in C ?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Yes, function overloading is a polymorphic form in C, specifically compile-time polymorphism. 1. Function overload allows multiple functions with the same name but different parameter lists. 2. The compiler decides which function to call at compile time based on the provided parameters. 3. Unlike runtime polymorphism, function overloading has no extra overhead at runtime, and is simple to implement but less flexible.

The destructor in C is used to free the resources occupied by the object. 1) They are automatically called at the end of the object's life cycle, such as leaving scope or using delete. 2) Resource management, exception security and performance optimization should be considered during design. 3) Avoid throwing exceptions in the destructor and use RAII mode to ensure resource release. 4) Define a virtual destructor in the base class to ensure that the derived class objects are properly destroyed. 5) Performance optimization can be achieved through object pools or smart pointers. 6) Keep the destructor thread safe and concise, and focus on resource release.

C has two main polymorphic types: compile-time polymorphism and run-time polymorphism. 1. Compilation-time polymorphism is implemented through function overloading and templates, providing high efficiency but may lead to code bloating. 2. Runtime polymorphism is implemented through virtual functions and inheritance, providing flexibility but performance overhead.

Implementing polymorphism in C can be achieved through the following steps: 1) use inheritance and virtual functions, 2) define a base class containing virtual functions, 3) rewrite these virtual functions by derived classes, and 4) call these functions using base class pointers or references. Polymorphism allows different types of objects to be treated as objects of the same basis type, thereby improving code flexibility and maintainability.

Yes, polymorphisms in C are very useful. 1) It provides flexibility to allow easy addition of new types; 2) promotes code reuse and reduces duplication; 3) simplifies maintenance, making the code easier to expand and adapt to changes. Despite performance and memory management challenges, its advantages are particularly significant in complex systems.

C destructorscanleadtoseveralcommonerrors.Toavoidthem:1)Preventdoubledeletionbysettingpointerstonullptrorusingsmartpointers.2)Handleexceptionsindestructorsbycatchingandloggingthem.3)Usevirtualdestructorsinbaseclassesforproperpolymorphicdestruction.4

Polymorphisms in C are divided into runtime polymorphisms and compile-time polymorphisms. 1. Runtime polymorphism is implemented through virtual functions, allowing the correct method to be called dynamically at runtime. 2. Compilation-time polymorphism is implemented through function overloading and templates, providing higher performance and flexibility.

C polymorphismincludescompile-time,runtime,andtemplatepolymorphism.1)Compile-timepolymorphismusesfunctionandoperatoroverloadingforefficiency.2)Runtimepolymorphismemploysvirtualfunctionsforflexibility.3)Templatepolymorphismenablesgenericprogrammingfo
