


How to Choose the Best Method for Storing Hierarchical Data in a Relational Database?
Jan 25, 2025 am 10:51 AMThe best way to store the data in the database of high efficiency relationship database
Introduction
The method of selecting the storage level data in the relationship database may be a difficult task. This article discusses various methods and their respective advantages and disadvantages to guide you to make wise decisions.
Weighing the advantages and disadvantages
The key to selecting the right storage method is to get a balance between fast reading time and quick writing time. The adjacent table usually provides faster reading performance, while the nested and bridge tables performed well in terms of writing performance. However, the combination of these technologies is usually the most suitable for specific needs. Storage options and their functions
<.> 1. The adjacent table
column:
ID, Parentid Advantages:
Easy to achieve, the cost of modification of nodes is low- Disadvantages: The cost of querying ancestors, offspring and paths is high
- <.> 2. Embedding (mptt)
- column: Left value, right value Advantages:
Disadvantages: Due to the changeable encoding, the cost of modification of the node is very high
- <.> 3. Bridge connection (closure table with a trigger)
- column: Ancestor, offspring, depth (optional) Advantages:
- Inquiry about the low cost of the ancestors and offspring, the standardized encoding Disadvantages: Each node needs to be multiple lines, the cost of inserting, updating and deleting is O (Log N)
<.> 4. Faber (materialization path)
- column: Spectrum Advantages:
- You can check the offspring cheaply through the prefix query Disadvantages: The cost of inserting, updating and deleting is O (LOG N), non -relational type
- <.> 5. The nested interval
column: Start, end
- Advantages:
- Due to non -volatile coding, the cost of modification of nodes is low, and it has real numbers/floating -point numbers/decimal indicators Disadvantages: Real/floating point number/decimal representation/accuracy problem
- <.> 6. Plane table
- column: level, ranking
Advantages: Cheap iteration and pagination
Disadvantages:- High operating costs of mobile and deleting
- <.> 7. Multiple scores
- column: Each layer of scores a column
- Advantages: Low the cost of the ancestors, offspring, and levels, low cost of insertion, deletion and movement of leaf nodes
High cost of insertion, deletion and movement of internal nodes, and the depth depth of the level has a hard limit
A specific precautions of the database-
MySQL/Mariadb: Use CTE to query the adjacent table in the latest version.
Oracle: Use Connect by to traverse the adjacent table.
PostgreSQL: Use LTREE data type for materialized paths.
SQL Server: 2008 provided Hierarchid data type for the formula method and expansion depth representation.
The best method and additional resources
This article recommends the use of adjacent tables to maintain the hierarchical structure and use nested sets for query, because it combines the advantages of the two methods. In addition, this article also provides valuable resources for you to further explore:- The nested interval and the adjacent table
- The model of layered data
-
In mysql, the hierarchical structure -
layered data in RDBMS
The above is the detailed content of How to Choose the Best Method for Storing Hierarchical Data in a Relational Database?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The default user name of MySQL is usually 'root', but the password varies according to the installation environment; in some Linux distributions, the root account may be authenticated by auth_socket plug-in and cannot log in with the password; when installing tools such as XAMPP or WAMP under Windows, root users usually have no password or use common passwords such as root, mysql, etc.; if you forget the password, you can reset it by stopping the MySQL service, starting in --skip-grant-tables mode, updating the mysql.user table to set a new password and restarting the service; note that the MySQL8.0 version requires additional authentication plug-ins.

GTID (Global Transaction Identifier) ??solves the complexity of replication and failover in MySQL databases by assigning a unique identity to each transaction. 1. It simplifies replication management, automatically handles log files and locations, allowing slave servers to request transactions based on the last executed GTID. 2. Ensure consistency across servers, ensure that each transaction is applied only once on each server, and avoid data inconsistency. 3. Improve troubleshooting efficiency. GTID includes server UUID and serial number, which is convenient for tracking transaction flow and accurately locate problems. These three core advantages make MySQL replication more robust and easy to manage, significantly improving system reliability and data integrity.

There are three ways to modify or reset MySQLroot user password: 1. Use the ALTERUSER command to modify existing passwords, and execute the corresponding statement after logging in; 2. If you forget your password, you need to stop the service and start it in --skip-grant-tables mode before modifying; 3. The mysqladmin command can be used to modify it directly by modifying it. Each method is suitable for different scenarios and the operation sequence must not be messed up. After the modification is completed, verification must be made and permission protection must be paid attention to.

MySQL main library failover mainly includes four steps. 1. Fault detection: Regularly check the main library process, connection status and simple query to determine whether it is downtime, set up a retry mechanism to avoid misjudgment, and can use tools such as MHA, Orchestrator or Keepalived to assist in detection; 2. Select the new main library: select the most suitable slave library to replace it according to the data synchronization progress (Seconds_Behind_Master), binlog data integrity, network delay and load conditions, and perform data compensation or manual intervention if necessary; 3. Switch topology: Point other slave libraries to the new master library, execute RESETMASTER or enable GTID, update the VIP, DNS or proxy configuration to

The steps to connect to the MySQL database are as follows: 1. Use the basic command format mysql-u username-p-h host address to connect, enter the username and password to log in; 2. If you need to directly enter the specified database, you can add the database name after the command, such as mysql-uroot-pmyproject; 3. If the port is not the default 3306, you need to add the -P parameter to specify the port number, such as mysql-uroot-p-h192.168.1.100-P3307; In addition, if you encounter a password error, you can re-enter it. If the connection fails, check the network, firewall or permission settings. If the client is missing, you can install mysql-client on Linux through the package manager. Master these commands

InnoDB implements repeatable reads through MVCC and gap lock. MVCC realizes consistent reading through snapshots, and the transaction query results remain unchanged after multiple transactions; gap lock prevents other transactions from inserting data and avoids phantom reading. For example, transaction A first query gets a value of 100, transaction B is modified to 200 and submitted, A is still 100 in query again; and when performing scope query, gap lock prevents other transactions from inserting records. In addition, non-unique index scans may add gap locks by default, and primary key or unique index equivalent queries may not be added, and gap locks can be cancelled by reducing isolation levels or explicit lock control.

Toalteralargeproductiontablewithoutlonglocks,useonlineDDLtechniques.1)IdentifyifyourALTERoperationisfast(e.g.,adding/droppingcolumns,modifyingNULL/NOTNULL)orslow(e.g.,changingdatatypes,reorderingcolumns,addingindexesonlargedata).2)Usedatabase-specifi

The function of InnoDBBufferPool is to improve MySQL read and write performance. It reduces disk I/O operations by cacheing frequently accessed data and indexes into memory, thereby speeding up query speed and optimizing write operations; 1. The larger the BufferPool, the more data is cached, and the higher the hit rate, which directly affects database performance; 2. It not only caches data pages, but also caches index structures such as B-tree nodes to speed up searches; 3. Supports cache "dirty pages", delays writing to disk, reduces I/O and improves write performance; 4. It is recommended to set it to 50%~80% of physical memory during configuration to avoid triggering swap; 5. It can be dynamically resized through innodb_buffer_pool_size, without restarting the instance.
