


How to distinguish between business logic and non-business logic in back-end development and perform reasonable layered design?
Apr 19, 2025 pm 08:45 PMBack-end hierarchical architecture: clear boundaries between business logic and non-business logic
In back-end development, the common three-tier architectures of controller, service and dao are not always clear enough. This article discusses how to effectively distinguish between business logic and non-business logic in the service and dao layers, and even after introducing the manager layer, so as to build a more reasonable layered design.
Definition between business logic and non-business logic
Business logic directly relates business requirements, while not business logic is responsible for underlying operations, such as data access, data verification, etc. Blurred boundaries between the two often lead to confusion in code.
-
Encapsulation of data operations: For example,
UserManager.delete()
andDepartmentManager.delete()
may handle the associated deletion ofUserDeptModel
at the same time. This is non-business logic because it focuses on data consistency rather than the business process itself. Code example:class UserManager: def delete(self, user_id): self.user_dao.delete(user_id) self.user_dept_dao.delete_by_user_id(user_id) class DepartmentManager: def delete(self, dept_id): self.dept_dao.delete(dept_id) self.user_dept_dao.delete_by_dept_id(dept_id)
-
Data security processing: password salting and other operations are usually performed at dao or manager layer, because this is a data protection mechanism, not business logic. Code example (Python with hypothetical
salt
function):class UserDao: def save(self, user): user.password = self.salt(user.password) # ... save user to database ... def salt(self, password): # ... password salting logic ... return salted_password
DAO layer method naming specification: DAO layer method names should avoid including business meanings. For example,
get_super_user()
is not as clear asget_user_by_type("super")
.External service call encapsulation: If the backend depends on external services, these calls should be encapsulated at the DAO layer, not the service layer, because this is data access, not business logic.
Simulate Django filter function
In Python, if there is no dependency injection framework, mocking Django filter requires processing request parameters at the DAO layer and passing them layer by layer. Java's Spring framework simplifies this process.
Data entity and hierarchy relationship
Controller, service and dao do not correspond one by one. Their responsibilities are as follows:
- Controller: System entry, receive and process requests, keeping it lightweight.
- Service: The core business logic processing layer is relatively complex.
- DAO: The data access layer is only responsible for data interaction and does not include business logic.
For example, "Create User" business: The Service layer performs "check whether the user name is duplicated" and "create user"; the DAO layer provides "query users based on user name" and "save users" methods.
By clearly distinguishing business logic from non-business logic and following a reasonable layered design, the maintainability and scalability of the code can be improved.
The above is the detailed content of How to distinguish between business logic and non-business logic in back-end development and perform reasonable layered design?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

The digital asset market attracts global attention with its high volatility. In this environment, how to steadily capture returns has become the goal pursued by countless participants. Quantitative trading, with its dependence on data and algorithm-driven characteristics, is becoming a powerful tool to deal with market challenges. Especially in 2025, this time node full of infinite possibilities is combined with the powerful programming language Python to build an automated "brick-moving" strategy, that is, to use the tiny price spreads between different trading platforms for arbitrage, which is considered a potential way to achieve efficient and stable profits.

Golangofferssuperiorperformance,nativeconcurrencyviagoroutines,andefficientresourceusage,makingitidealforhigh-traffic,low-latencyAPIs;2.Python,whileslowerduetointerpretationandtheGIL,provideseasierdevelopment,arichecosystem,andisbettersuitedforI/O-bo

A class method is a method defined in Python through the @classmethod decorator. Its first parameter is the class itself (cls), which is used to access or modify the class state. It can be called through a class or instance, which affects the entire class rather than a specific instance; for example, in the Person class, the show_count() method counts the number of objects created; when defining a class method, you need to use the @classmethod decorator and name the first parameter cls, such as the change_var(new_value) method to modify class variables; the class method is different from the instance method (self parameter) and static method (no automatic parameters), and is suitable for factory methods, alternative constructors, and management of class variables. Common uses include:

Parameters are placeholders when defining a function, while arguments are specific values ??passed in when calling. 1. Position parameters need to be passed in order, and incorrect order will lead to errors in the result; 2. Keyword parameters are specified by parameter names, which can change the order and improve readability; 3. Default parameter values ??are assigned when defined to avoid duplicate code, but variable objects should be avoided as default values; 4. args and *kwargs can handle uncertain number of parameters and are suitable for general interfaces or decorators, but should be used with caution to maintain readability.

TointegrateGolangserviceswithexistingPythoninfrastructure,useRESTAPIsorgRPCforinter-servicecommunication,allowingGoandPythonappstointeractseamlesslythroughstandardizedprotocols.1.UseRESTAPIs(viaframeworkslikeGininGoandFlaskinPython)orgRPC(withProtoco

Iterators are objects that implement __iter__() and __next__() methods. The generator is a simplified version of iterators, which automatically implement these methods through the yield keyword. 1. The iterator returns an element every time he calls next() and throws a StopIteration exception when there are no more elements. 2. The generator uses function definition to generate data on demand, saving memory and supporting infinite sequences. 3. Use iterators when processing existing sets, use a generator when dynamically generating big data or lazy evaluation, such as loading line by line when reading large files. Note: Iterable objects such as lists are not iterators. They need to be recreated after the iterator reaches its end, and the generator can only traverse it once.

Python's garbage collection mechanism automatically manages memory through reference counting and periodic garbage collection. Its core method is reference counting, which immediately releases memory when the number of references of an object is zero; but it cannot handle circular references, so a garbage collection module (gc) is introduced to detect and clean the loop. Garbage collection is usually triggered when the reference count decreases during program operation, the allocation and release difference exceeds the threshold, or when gc.collect() is called manually. Users can turn off automatic recycling through gc.disable(), manually execute gc.collect(), and adjust thresholds to achieve control through gc.set_threshold(). Not all objects participate in loop recycling. If objects that do not contain references are processed by reference counting, it is built-in
