Summary of unique ID generation solutions for distributed systems
Sep 14, 2018 pm 01:39 PMThe unique system ID is a problem we often encounter when designing a system, and we often struggle with this problem. There are many ways to generate IDs, adapting to different scenarios, needs and performance requirements. Therefore, some more complex systems will have multiple ID generation strategies. Here are some common ID generation strategies.
1. Database self-increasing sequence or field
The most common way. Using the database, the entire database is unique.
Advantages:
-
Simple, convenient code, and acceptable performance.
-
Numeric IDs are naturally sorted, which is helpful for paging or results that need to be sorted.
Disadvantages:
-
# Different database syntax and implementation are different, when database migration or when multiple database versions are supported Needs to be processed.
-
In the case of a single database or read-write separation or one master and multiple slaves, there is only one master database can be generated. There is a risk of a single point of failure.
-
It is difficult to expand when the performance cannot meet the requirements.
-
If you encounter multiple systems that need to be merged or data migration is involved, it will be quite painful.
-
There will be trouble when dividing tables and databases.
Optimization plan:
-
For the main database single point, if there are multiple Master databases, each Master The starting number set by the library is different, but the step size is the same, which can be the number of Masters. For example: Master1 generates 1, 4, 7, 10, Master2 generates 2,5,8,11, Master3 generates 3,6,9,12. This can effectively generate unique IDs in the cluster, and can also greatly reduce the load of ID generation database operations.
2. UUID common method.
It can be generated using a database or a program, and is generally unique in the world.
Advantages:
-
Simple and convenient code.
-
The ID generation performance is very good and there will be basically no performance problems.
-
The only one in the world. In the case of data migration, system data merging, or database changes, you can Take it in stride.
Disadvantages:
-
There is no sorting, and the trend cannot be guaranteed to increase.
-
UUID is often stored using strings, and the query efficiency is relatively low.
-
The storage space is relatively large. If it is a massive database, you need to consider the storage amount.
-
Transfer large amount of data
-
is not readable.
3. Redis generates ID
When the performance of using the database to generate ID is not enough, we can try to use Redis to generate ID. This mainly relies on Redis being single-threaded, so it can also be used to generate globally unique IDs. This can be achieved using Redis's atomic operations INCR and INCRBY.
You can use Redis cluster to obtain higher throughput. Suppose there are 5 Redis in a cluster. The values ??of each Redis can be initialized to 1, 2, 3, 4, 5 respectively, and then the step size is all 5. The IDs generated by each Redis are:
A: 1,6,11,16,21 B: 2,7,12,17,22 C: 3,8,13,18,23 D: 4, 9,14,19,24 E: 5,10,15,20,25
This can be determined by whichever machine it is loaded to. It will be difficult to modify in the future. However, 3-5 servers can basically satisfy the needs of the server, and they can all obtain different IDs. But the step size and initial value must be required in advance. Using Redis cluster can also solve the problem of single point of failure.
In addition, it is more suitable to use Redis to generate serial numbers starting from 0 every day. For example, order number = date, and the number will increase automatically on that day. You can generate a Key in Redis every day and use INCR for accumulation.
Advantages:
- ## does not depend on the database, is flexible and convenient, and has better performance than the database.
- Numeric IDs are naturally sorted, which is helpful for paging or results that need to be sorted.
- If there is no Redis in the system, new components need to be introduced, increasing the system complexity.
- The workload required for coding and configuration is relatively large.
public class IdWorker { // ==============================Fields=========================================== /** 開始時間截 (2015-01-01) */ private final long twepoch = 1420041600000L; /** 機器id所占的位數 */ private final long workerIdBits = 5L; /** 數據標識id所占的位數 */ private final long datacenterIdBits = 5L; /** 支持的最大機器id,結果是31 (這個移位算法可以很快的計算出幾位二進制數所能表示的最大十進制數) */ private final long maxWorkerId = -1L ^ (-1L << workerIdBits); /** 支持的最大數據標識id,結果是31 */ private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); /** 序列在id中占的位數 */ private final long sequenceBits = 12L; /** 機器ID向左移12位 */ private final long workerIdShift = sequenceBits; /** 數據標識id向左移17位(12+5) */ private final long datacenterIdShift = sequenceBits + workerIdBits; /** 時間截向左移22位(5+5+12) */ private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; /** 生成序列的掩碼,這里為4095 (0b111111111111=0xfff=4095) */ private final long sequenceMask = -1L ^ (-1L << sequenceBits); /** 工作機器ID(0~31) */ private long workerId; /** 數據中心ID(0~31) */ private long datacenterId; /** 毫秒內序列(0~4095) */ private long sequence = 0L; /** 上次生成ID的時間截 */ private long lastTimestamp = -1L; //==============================Constructors===================================== /** * 構造函數 * @param workerId 工作ID (0~31) * @param datacenterId 數據中心ID (0~31) */ public IdWorker(long workerId, long datacenterId) { if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; } // ==============================Methods========================================== /** * 獲得下一個ID (該方法是線程安全的) * @return SnowflakeId */ public synchronized long nextId() { long timestamp = timeGen(); //如果當前時間小于上一次ID生成的時間戳,說明系統(tǒng)時鐘回退過這個時候應當拋出異常 if (timestamp < lastTimestamp) { throw new RuntimeException( String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } //如果是同一時間生成的,則進行毫秒內序列 if (lastTimestamp == timestamp) { sequence = (sequence + 1) & sequenceMask; //毫秒內序列溢出 if (sequence == 0) { //阻塞到下一個毫秒,獲得新的時間戳 timestamp = tilNextMillis(lastTimestamp); } } //時間戳改變,毫秒內序列重置 else { sequence = 0L; } //上次生成ID的時間截 lastTimestamp = timestamp; //移位并通過或運算拼到一起組成64位的ID return ((timestamp - twepoch) << timestampLeftShift) // | (datacenterId << datacenterIdShift) // | (workerId << workerIdShift) // | sequence; } /** * 阻塞到下一個毫秒,直到獲得新的時間戳 * @param lastTimestamp 上次生成ID的時間截 * @return 當前時間戳 */ protected long tilNextMillis(long lastTimestamp) { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { timestamp = timeGen(); } return timestamp; } /** * 返回以毫秒為單位的當前時間 * @return 當前時間(毫秒) */ protected long timeGen() { return System.currentTimeMillis(); } //==============================Test============================================= /** 測試 */ public static void main(String[] args) { IdWorker idWorker = new IdWorker(0, 0); for (int i = 0; i < 1000; i++) { long id = idWorker.nextId(); System.out.println(Long.toBinaryString(id)); System.out.println(id); } }}
snowflake algorithm can be modified according to the needs of your own project. For example, estimate the number of future data centers, the number of machines in each data center, and the number of possible concurrencies in a unified millisecond to adjust the number of bits required in the algorithm.
Advantages:
- ## does not depend on the database, is flexible and convenient, and has better performance than the database.
- ID is incremented on a single machine according to time.
- is incremental on a single machine, but since it involves a distributed environment, each machine The clocks on the clock cannot be completely synchronized, and sometimes there may be situations where the global increment is not achieved.
php news release management system development example
PHP development simple news release system tutorial
The above is the detailed content of Summary of unique ID generation solutions for distributed systems. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

How to use Redis to achieve distributed data synchronization With the development of Internet technology and the increasingly complex application scenarios, the concept of distributed systems is increasingly widely adopted. In distributed systems, data synchronization is an important issue. As a high-performance in-memory database, Redis can not only be used to store data, but can also be used to achieve distributed data synchronization. For distributed data synchronization, there are generally two common modes: publish/subscribe (Publish/Subscribe) mode and master-slave replication (Master-slave).

How Redis implements distributed session management requires specific code examples. Distributed session management is one of the hot topics on the Internet today. In the face of high concurrency and large data volumes, traditional session management methods are gradually becoming inadequate. As a high-performance key-value database, Redis provides a distributed session management solution. This article will introduce how to use Redis to implement distributed session management and give specific code examples. 1. Introduction to Redis as a distributed session storage. The traditional session management method is to store session information.

How to use Swoole to implement distributed scheduled task scheduling Introduction: In traditional PHP development, we often use cron to implement scheduled task scheduling, but cron can only execute tasks on a single server and cannot cope with high concurrency scenarios. Swoole is a high-performance asynchronous concurrency framework based on PHP. It provides complete network communication capabilities and multi-process support, allowing us to easily implement distributed scheduled task scheduling. This article will introduce how to use Swoole to implement distributed scheduled task scheduling

Using Redis to achieve distributed cache consistency In modern distributed systems, cache plays a very important role. It can greatly reduce the frequency of system access to the database and improve system performance and throughput. In a distributed system, in order to ensure cache consistency, we need to solve the problem of data synchronization between multiple nodes. In this article, we will introduce how to use Redis to achieve distributed cache consistency and give specific code examples. Redis is a high-performance key-value database that supports persistence, replication, and collection

MongoDB is an open source NoSQL database with high performance, scalability and flexibility. In distributed systems, task scheduling and execution are a key issue. By utilizing the characteristics of MongoDB, distributed task scheduling and execution solutions can be realized. 1. Requirements Analysis for Distributed Task Scheduling In a distributed system, task scheduling is the process of allocating tasks to different nodes for execution. Common task scheduling requirements include: 1. Task request distribution: Send task requests to available execution nodes.

Using Redis to implement distributed task scheduling With the expansion of business and the development of the system, many businesses need to implement distributed task scheduling to ensure that tasks can be executed on multiple nodes at the same time, thereby improving the stability and availability of the system. As a high-performance memory data storage product, Redis has the characteristics of distribution, high availability, and high performance, and is very suitable for implementing distributed task scheduling. This article will introduce how to use Redis to implement distributed task scheduling and provide corresponding code examples. 1. Redis base

Methods and techniques for developing and implementing distributed log analysis systems using Go language Abstract: With the advent of the big data era, log analysis has become an essential task for enterprises. This article introduces the methods and techniques for developing and implementing a distributed log analysis system based on the Go language. The article provides a detailed analysis from the aspects of system architecture design, data collection, distributed processing, data storage and query, etc., and provides readers with a set of practical guidelines. Keywords: Go language; distributed system; log analysis 1. Introduction With the rapid development of the Internet and intelligent devices

Details, techniques, and best practices for implementing distributed log collection and analysis with Golang and RabbitMQ. In recent years, with the popularity of microservice architecture and the complexity of large-scale systems, log collection and analysis have become more and more important. In a distributed system, the logs of each microservice are often scattered in different places. How to efficiently collect and analyze these logs becomes a challenge. This article will introduce the details, techniques, and best practices on how to use Golang and RabbitMQ to implement distributed log collection and analysis. Ra
