


Getting started with the Python GIL: How to understand and use the global interpreter lock
Feb 27, 2024 am 09:10 AMWhat is GIL?
GIL is the abbreviation of global interpreter lock, which is an important concept of python interpreter. The GIL ensures that the Python interpreter can only execute one thread at a time. This means that at any time, only one thread can run Python bytecode. Other threads must wait for the GIL to be available before continuing execution.
How does GIL work?
GIL is a lock written in C language and is located in the Python interpreter. When a thread wants to execute Python bytecode, it must first obtain the GIL. If the GIL is already held by another thread, that thread must wait for the GIL to be available before continuing execution.
What impact does GIL have on Python programs?
The impact of GIL on Python programs is manifold. First, it prevents Python programs from taking full advantage of multi-core CPUs in a multi-threaded environment. This is because the GIL ensures that only one thread can execute Python bytecode at the same time, which means that other threads must wait for the GIL to be available before continuing execution.
Secondly, GIL makes Python programs prone to deadlocks under certain circumstances. For example, if one thread is holding the GIL and waiting for another thread to release a lock, and another thread is holding the lock and waiting for the GIL to be available, then the two threads will be stuck in a deadlock.
How to understand and use GIL?
In order to understand and use GIL, you first need to understand how GIL works. As mentioned above, the GIL is a lock written in C and located in the Python interpreter. When a thread wants to execute Python bytecode, it must first obtain the GIL. If the GIL is already held by another thread, that thread must wait for the GIL to be available before continuing execution.
Secondly, you need to understand the impact of GIL on Python programs. The impact of GIL on Python programs is manifold. First, it prevents Python programs from taking full advantage of multi-core CPUs in a multi-threaded environment. This is because the GIL ensures that only one thread can execute Python bytecode at the same time, which means that other threads must wait for the GIL to be available before continuing execution.
Secondly, GIL makes Python programs prone to deadlocks under certain circumstances. For example, if one thread is holding the GIL and waiting for another thread to release a lock, and another thread is holding the lock and waiting for the GIL to be available, then the two threads will be stuck in a deadlock.
In order to avoid the negative impact of GIL on Python programs, you can take the following measures:
- Try to avoid using multi-threading in Python programs.
- If you must use multi-threading, you should pay attention to avoid deadlock.
- You can use the GILStateSave() and GILStateRestore() functions to temporarily release GIL.
Demo code:
import threading def task(): print("This is a task.") def main(): threads = [] for i in range(10): thread = threading.Thread(target=task) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() if __name__ == "__main__": main()
This code creates 10 threads, each thread will execute the task function. The task function prints a message. The main function first creates 10 threads and then starts them. Finally, the main function waits for all threads to finish executing.
When running this code, GIL will ensure that only one thread executes the task function at the same time. This means that other threads must wait for the GIL to be available before they can continue execution.
GILStateSave() and GILStateRestore() functions
The GILStateSave() and GILStateRestore() functions can be used to temporarily release GIL. This is useful for certain operations that take a long time to perform, such as I/O operations. The GILStateSave() function can save the current GIL state, and the GILStateRestore() function can restore the saved GIL state.
The following example demonstrates how to use the GILStateSave() and GILStateRestore() functions:
import threading def task(): print("This is a task.") def main(): threads = [] for i in range(10): thread = threading.Thread(target=task) threads.append(thread) for thread in threads: thread.start() with GILStateSave(): # PerfORM an operation that does not require the GIL. for thread in threads: thread.join() if __name__ == "__main__": main()
This code is similar to the previous code, but it uses the GILStateSave() and GILStateRestore() functions to temporarily release the GIL. This allows operations that do not require the GIL to be performed while other threads are executing.
The above is the detailed content of Getting started with the Python GIL: How to understand and use the global interpreter lock. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

The digital asset market attracts global attention with its high volatility. In this environment, how to steadily capture returns has become the goal pursued by countless participants. Quantitative trading, with its dependence on data and algorithm-driven characteristics, is becoming a powerful tool to deal with market challenges. Especially in 2025, this time node full of infinite possibilities is combined with the powerful programming language Python to build an automated "brick-moving" strategy, that is, to use the tiny price spreads between different trading platforms for arbitrage, which is considered a potential way to achieve efficient and stable profits.

Golangofferssuperiorperformance,nativeconcurrencyviagoroutines,andefficientresourceusage,makingitidealforhigh-traffic,low-latencyAPIs;2.Python,whileslowerduetointerpretationandtheGIL,provideseasierdevelopment,arichecosystem,andisbettersuitedforI/O-bo

A class method is a method defined in Python through the @classmethod decorator. Its first parameter is the class itself (cls), which is used to access or modify the class state. It can be called through a class or instance, which affects the entire class rather than a specific instance; for example, in the Person class, the show_count() method counts the number of objects created; when defining a class method, you need to use the @classmethod decorator and name the first parameter cls, such as the change_var(new_value) method to modify class variables; the class method is different from the instance method (self parameter) and static method (no automatic parameters), and is suitable for factory methods, alternative constructors, and management of class variables. Common uses include:

Parameters are placeholders when defining a function, while arguments are specific values ??passed in when calling. 1. Position parameters need to be passed in order, and incorrect order will lead to errors in the result; 2. Keyword parameters are specified by parameter names, which can change the order and improve readability; 3. Default parameter values ??are assigned when defined to avoid duplicate code, but variable objects should be avoided as default values; 4. args and *kwargs can handle uncertain number of parameters and are suitable for general interfaces or decorators, but should be used with caution to maintain readability.

Iterators are objects that implement __iter__() and __next__() methods. The generator is a simplified version of iterators, which automatically implement these methods through the yield keyword. 1. The iterator returns an element every time he calls next() and throws a StopIteration exception when there are no more elements. 2. The generator uses function definition to generate data on demand, saving memory and supporting infinite sequences. 3. Use iterators when processing existing sets, use a generator when dynamically generating big data or lazy evaluation, such as loading line by line when reading large files. Note: Iterable objects such as lists are not iterators. They need to be recreated after the iterator reaches its end, and the generator can only traverse it once.

Python's garbage collection mechanism automatically manages memory through reference counting and periodic garbage collection. Its core method is reference counting, which immediately releases memory when the number of references of an object is zero; but it cannot handle circular references, so a garbage collection module (gc) is introduced to detect and clean the loop. Garbage collection is usually triggered when the reference count decreases during program operation, the allocation and release difference exceeds the threshold, or when gc.collect() is called manually. Users can turn off automatic recycling through gc.disable(), manually execute gc.collect(), and adjust thresholds to achieve control through gc.set_threshold(). Not all objects participate in loop recycling. If objects that do not contain references are processed by reference counting, it is built-in

Pythonmanagesmemoryautomaticallyusingreferencecountingandagarbagecollector.Referencecountingtrackshowmanyvariablesrefertoanobject,andwhenthecountreacheszero,thememoryisfreed.However,itcannothandlecircularreferences,wheretwoobjectsrefertoeachotherbuta
