国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Table des matières
Que se passe-t-il lorsque vous utilisez un argument par défaut mutable?
Pourquoi ce comportement est-il problématique?
Comment éviter le problème
Maison développement back-end Tutoriel Python Comment Python gère-t-il les arguments par défaut mutables dans les fonctions, et pourquoi cela peut-il être problématique?

Comment Python gère-t-il les arguments par défaut mutables dans les fonctions, et pourquoi cela peut-il être problématique?

Jun 14, 2025 am 12:27 AM
python

Les paramètres par défaut de Python ne sont initialisés qu'une seule fois lorsqu'ils sont définis. Si des objets mutables (tels que des listes ou des dictionnaires) sont utilisés comme paramètres par défaut, un comportement inattendu peut être causé. Par exemple, lors de l'utilisation d'une liste vide comme paramètre par défaut, plusieurs appels à la fonction réutiliseront la même liste au lieu de générer une nouvelle liste à chaque fois. Les problèmes causés par ce comportement comprennent: 1. Partage inattendu des données entre les appels de fonction; 2. Les résultats des appels suivants sont affectés par les appels précédents, augmentant la difficulté de débogage; 3. Il provoque des erreurs logiques et est difficile à détecter; 4. Il est facile de confondre les développeurs novices et expérimentés. Pour éviter les problèmes, la meilleure pratique consiste à définir la valeur par défaut sur aucun et à créer un nouvel objet à l'intérieur de la fonction, comme utiliser my_list = Aucun au lieu de my_list = [] et initialiser la liste dans la fonction. De plus, il est nécessaire de déterminer soigneusement si l'état partagé est requis, de déclarer explicitement les intentions et de documenter clairement le comportement de l'API.

Comment Python gère-t-il les arguments par défaut mutables dans les fonctions, et pourquoi cela peut-il être problématique?

Le traitement par Python des arguments par défaut mutables dans les définitions de fonction peut être un peu délicat, et si vous ne savez pas comment cela fonctionne, cela peut conduire à un comportement inattendu.

Le problème vient de l'utilisation d'un objet mutable - comme une liste ou un dictionnaire - comme argument par défaut dans une définition de fonction. Le point clé est que les arguments par défaut ne sont évalués qu'une seule fois , lorsque la fonction est définie, pas à chaque fois que la fonction est appelée.

Cela peut sembler un petit détail, mais cela peut provoquer des bugs difficiles à retrouver.


Que se passe-t-il lorsque vous utilisez un argument par défaut mutable?

Regardons un exemple commun:

 def add_item (item, my_list = []):
    my_list.append (item)
    Renvoie ma_list

Si vous appelez cette fonction plusieurs fois sans fournir my_list , comme ceci:

 print (add_item ('a')) # ['a']
print (add_item ('b')) # ['a', 'b']

Vous pouvez vous attendre à ce que chaque appel commence par une nouvelle liste vide, mais à la place, la même liste est réutilisée sur tous les appels.

Pourquoi? Parce que la valeur par défaut [] a été créée une fois lorsque la fonction a été définie, pas à chaque fois qu'elle s'appelle.


Pourquoi ce comportement est-il problématique?

Ce comportement devient un problème car il va à l'encontre de ce que la plupart des gens attendent réellement. Lors de l'écriture de fonctions, nous pensons généralement que les valeurs par défaut sont définies à chaque fois que la fonction s'exécute.

Voici quelques problèmes spécifiques que cela cause:

  • Partage de données accidentelles entre les appels de fonction
    Un appel peut affecter le résultat des appels ultérieurs, ce qui rend le débogage plus difficile.

  • Erreurs de logique difficile à capter
    Vous pourriez passer du temps à rechercher pourquoi votre liste continue de cro?tre même si vous ne l'avez pas voulu.

  • Confusion pour les débutants (et parfois les pros)
    Ceci est un gotcha classique dans les interviews Python et le code du monde réel.


Comment éviter le problème

Pour éviter ce type de comportement, une meilleure pratique courante consiste à en utiliser None comme valeur par défaut et à créer un nouvel objet mutable à l'intérieur de la fonction:

 def add_item (item, my_list = aucun):
    Si ma_list n'est aucune:
        my_list = []
    my_list.append (item)
    Renvoie ma_list

Maintenant, appeler la fonction sans my_list vous donnera correctement une nouvelle liste à chaque fois.

Autres conseils:

  • Considérez toujours si une valeur par défaut mutable a du sens pour votre fonction.
  • Si vous voulez un état partagé, rendez-le explicite - ne comptez pas sur ce comportement caché.
  • Documentez clairement le comportement prévu, surtout si vous écrivez une bibliothèque ou une API.

En bref, Python évalue une fois les arguments par défaut, ce qui est bien pour les types immuables comme les nombres ou les cha?nes, mais conduit à des surprises avec des types mutables. évitez le piège en utilisant None comme espace réservée et en initialisant l'objet à l'intérieur de la fonction.

C'est essentiellement comme ?a que cela fonctionne - pas compliqué, mais certainement quelque chose à surveiller.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefa?on, veuillez contacter admin@php.cn

Outils d'IA chauds

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Polymorphisme dans les classes python Polymorphisme dans les classes python Jul 05, 2025 am 02:58 AM

Le polymorphisme est un concept de base dans la programmation orientée objet Python, se référant à "une interface, plusieurs implémentations", permettant le traitement unifié de différents types d'objets. 1. Le polymorphisme est implémenté par la réécriture de la méthode. Les sous-classes peuvent redéfinir les méthodes de classe parent. Par exemple, la méthode Spoke () de classe animale a des implémentations différentes dans les sous-classes de chiens et de chats. 2. Les utilisations pratiques du polymorphisme comprennent la simplification de la structure du code et l'amélioration de l'évolutivité, tels que l'appel de la méthode Draw () uniformément dans le programme de dessin graphique, ou la gestion du comportement commun des différents personnages dans le développement de jeux. 3. Le polymorphisme de l'implémentation de Python doit satisfaire: la classe parent définit une méthode, et la classe enfant remplace la méthode, mais ne nécessite pas l'héritage de la même classe parent. Tant que l'objet implémente la même méthode, c'est ce qu'on appelle le "type de canard". 4. Les choses à noter incluent la maintenance

2025 Compétences en négociation quantitative: stratégie de déménagement automatique de Python, réalisant un bénéfice quotidien de 5% aussi stable qu'un chien! 2025 Compétences en négociation quantitative: stratégie de déménagement automatique de Python, réalisant un bénéfice quotidien de 5% aussi stable qu'un chien! Jul 03, 2025 am 10:27 AM

Le marché des actifs numériques attire l'attention mondiale avec sa grande volatilité. Dans cet environnement, comment capturer régulièrement les rendements est devenu l'objectif poursuivi par d'innombrables participants. Le trading quantitatif, avec sa dépendance à l'égard des données et des caractéristiques axés sur les algorithmes, devient un outil puissant pour faire face aux défis du marché. Surtout en 2025, ce n?ud temporel plein de possibilités infinies est combinée avec le puissant langage de programmation Python pour construire une stratégie automatisée de "déménagement", c'est-à-dire pour utiliser les minuscules écarts de prix entre différentes plates-formes de trading pour l'arbitrage, ce qui est considéré comme un moyen potentiel de réaliser des bénéfices efficaces et stables.

Python `@ ClassMethod` Décorateur expliqué Python `@ ClassMethod` Décorateur expliqué Jul 04, 2025 am 03:26 AM

Une méthode de classe est une méthode définie dans Python via le décorateur @classMethod. Son premier paramètre est la classe elle-même (CLS), qui est utilisée pour accéder ou modifier l'état de classe. Il peut être appelé via une classe ou une instance, qui affecte la classe entière plut?t que par une instance spécifique; Par exemple, dans la classe de personne, la méthode show_count () compte le nombre d'objets créés; Lorsque vous définissez une méthode de classe, vous devez utiliser le décorateur @classMethod et nommer le premier paramètre CLS, tel que la méthode Change_var (new_value) pour modifier les variables de classe; La méthode de classe est différente de la méthode d'instance (auto-paramètre) et de la méthode statique (pas de paramètres automatiques), et convient aux méthodes d'usine, aux constructeurs alternatifs et à la gestion des variables de classe. Les utilisations courantes incluent:

Comprendre les différences de performances entre Golang et Python pour les API Web Comprendre les différences de performances entre Golang et Python pour les API Web Jul 03, 2025 am 02:40 AM

GolangoffersSuperiorPerformance, nativeConcaunternandViagoroutines, and efficaceResourceUsage, faisant la provision de la trafic, low-lantentencyapis; 2.python, tandis que la locosystème de lavel

Arguments et paramètres de fonction Python Arguments et paramètres de fonction Python Jul 04, 2025 am 03:26 AM

Les paramètres sont des espaces réservés lors de la définition d'une fonction, tandis que les arguments sont des valeurs spécifiques transmises lors de l'appel. 1. Les paramètres de position doivent être passés dans l'ordre, et l'ordre incorrect entra?nera des erreurs dans le résultat; 2. Les paramètres de mots clés sont spécifiés par les noms de paramètres, qui peuvent modifier l'ordre et améliorer la lisibilité; 3. Les valeurs de paramètres par défaut sont attribuées lorsqu'elles sont définies pour éviter le code en double, mais les objets variables doivent être évités comme valeurs par défaut; 4. Les args et * kwargs peuvent gérer le nombre incertain de paramètres et conviennent aux interfaces générales ou aux décorateurs, mais doivent être utilisées avec prudence pour maintenir la lisibilité.

Stratégies d'intégration des services de Golang à l'infrastructure Python existante Stratégies d'intégration des services de Golang à l'infrastructure Python existante Jul 02, 2025 pm 04:39 PM

TointegrategolangServices withexistingpythoninfrastructure, userestapisorgrpcForInter-Servicecommunication, permettant à la perfection

Expliquez les générateurs et itérateurs Python. Expliquez les générateurs et itérateurs Python. Jul 05, 2025 am 02:55 AM

Les itérateurs sont des objets qui implémentent __iter __ () et __Next __ (). Le générateur est une version simplifiée des itérateurs, qui implémentent automatiquement ces méthodes via le mot clé de rendement. 1. L'ITERATOR renvoie un élément chaque fois qu'il appelle Next () et lance une exception d'arrêt lorsqu'il n'y a plus d'éléments. 2. Le générateur utilise la définition de la fonction pour générer des données à la demande, enregistrer la mémoire et prendre en charge les séquences infinies. 3. Utilisez des itérateurs lors du traitement des ensembles existants, utilisez un générateur lors de la génération de Big Data ou de l'évaluation paresseuse, telles que le chargement ligne par ligne lors de la lecture de fichiers volumineux. Remarque: les objets itérables tels que les listes ne sont pas des itérateurs. Ils doivent être recréés après que l'itérateur a atteint sa fin, et le générateur ne peut le traverser qu'une seule fois.

Décrivez la collection Python Garbage à Python. Décrivez la collection Python Garbage à Python. Jul 03, 2025 am 02:07 AM

Le mécanisme de collecte des ordures de Python gère automatiquement la mémoire grace à un comptage de référence et à la collecte périodique des ordures. Sa méthode principale est le comptage de référence, qui libère immédiatement la mémoire lorsque le nombre de références d'un objet est nul; Mais il ne peut pas gérer les références circulaires, donc un module de collecte d'ordures (GC) est introduit pour détecter et nettoyer la boucle. La collecte des ordures est généralement déclenchée lorsque le nombre de références diminue pendant le fonctionnement du programme, la différence d'allocation et de libération dépasse le seuil, ou lorsque GC.Collect () est appelé manuellement. Les utilisateurs peuvent désactiver le recyclage automatique via GC.Disable (), exécuter manuellement GC.Collect () et ajuster les seuils pour atteindre le contr?le via gc.set_thershold (). Tous les objets ne participent pas au recyclage des boucles. Si les objets qui ne contiennent pas de références sont traités par comptage de référence, il est intégré

See all articles