Calling base.base.method():
In object-oriented programming, it's common practice to create class hierarchies with base and derived classes. When overriding a method in the derived class, you can invoke the base class implementation using base. However, in certain scenarios, you may encounter a situation where you want to access the base class of the base class.
Consider the following example code:
class Base { public virtual void Say() { Console.WriteLine("Called from Base."); } } class Derived : Base { public override void Say() { Console.WriteLine("Called from Derived."); base.Say(); } } class SpecialDerived : Derived { public override void Say() { Console.WriteLine("Called from Special Derived."); base.Say(); } }
When you call sd.Say() for an instance of SpecialDerived, you expect the following output:
Called from Special Derived. Called from Derived. Called from Base.
However, you actually get:
Called from Special Derived. Called from Derived. /* this is not expected */ Called from Base.
The unexpected call to Derived.Say() is because base always refers to the immediate base class in the hierarchy. Therefore, SpecialDerived.Say() invokes Derived.Say() before calling Base.Say().
To avoid this behavior, you can't directly use base.base.method(). Instead, you can utilize the following approach:
class Derived : Base { public override void Say() { CustomSay(); base.Say(); } protected virtual void CustomSay() { Console.WriteLine("Called from Derived."); } } class SpecialDerived : Derived { protected override void CustomSay() { Console.WriteLine("Called from Special Derived."); } }
By introducing the intermediate method CustomSay(), you have control over what's executed in the derived class call chain. In this case, SpecialDerived overrides CustomSay() to provide its own behavior, effectively skipping Derived.CustomSay().
Alternatively, you can access the base class method handle using reflection and invoke it directly, as shown below:
class SpecialDerived : Derived { public override void Say() { Console.WriteLine("Called from Special Derived."); var ptr = typeof(Base).GetMethod("Say").MethodHandle.GetFunctionPointer(); var baseSay = (Action)Activator.CreateInstance(typeof(Action), this, ptr); baseSay(); } }
The above is the detailed content of How to Call a Base Class's Base Class Method in C#?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Yes, function overloading is a polymorphic form in C, specifically compile-time polymorphism. 1. Function overload allows multiple functions with the same name but different parameter lists. 2. The compiler decides which function to call at compile time based on the provided parameters. 3. Unlike runtime polymorphism, function overloading has no extra overhead at runtime, and is simple to implement but less flexible.

C has two main polymorphic types: compile-time polymorphism and run-time polymorphism. 1. Compilation-time polymorphism is implemented through function overloading and templates, providing high efficiency but may lead to code bloating. 2. Runtime polymorphism is implemented through virtual functions and inheritance, providing flexibility but performance overhead.

Yes, polymorphisms in C are very useful. 1) It provides flexibility to allow easy addition of new types; 2) promotes code reuse and reduces duplication; 3) simplifies maintenance, making the code easier to expand and adapt to changes. Despite performance and memory management challenges, its advantages are particularly significant in complex systems.

C destructorscanleadtoseveralcommonerrors.Toavoidthem:1)Preventdoubledeletionbysettingpointerstonullptrorusingsmartpointers.2)Handleexceptionsindestructorsbycatchingandloggingthem.3)Usevirtualdestructorsinbaseclassesforproperpolymorphicdestruction.4

Polymorphisms in C are divided into runtime polymorphisms and compile-time polymorphisms. 1. Runtime polymorphism is implemented through virtual functions, allowing the correct method to be called dynamically at runtime. 2. Compilation-time polymorphism is implemented through function overloading and templates, providing higher performance and flexibility.

People who study Python transfer to C The most direct confusion is: Why can't you write like Python? Because C, although the syntax is more complex, provides underlying control capabilities and performance advantages. 1. In terms of syntax structure, C uses curly braces {} instead of indentation to organize code blocks, and variable types must be explicitly declared; 2. In terms of type system and memory management, C does not have an automatic garbage collection mechanism, and needs to manually manage memory and pay attention to releasing resources. RAII technology can assist resource management; 3. In functions and class definitions, C needs to explicitly access modifiers, constructors and destructors, and supports advanced functions such as operator overloading; 4. In terms of standard libraries, STL provides powerful containers and algorithms, but needs to adapt to generic programming ideas; 5

C polymorphismincludescompile-time,runtime,andtemplatepolymorphism.1)Compile-timepolymorphismusesfunctionandoperatoroverloadingforefficiency.2)Runtimepolymorphismemploysvirtualfunctionsforflexibility.3)Templatepolymorphismenablesgenericprogrammingfo

C polymorphismisuniqueduetoitscombinationofcompile-timeandruntimepolymorphism,allowingforbothefficiencyandflexibility.Toharnessitspowerstylishly:1)Usesmartpointerslikestd::unique_ptrformemorymanagement,2)Ensurebaseclasseshavevirtualdestructors,3)Emp
