We use Plotly charts extensively in the company I work for. They make it easy to create interactive graphics that look good. The Python experience via the Plotly Express library is great and the bar to get started is low.
We have two main use-cases for Plotly graphs:
- For our interactive dashboards with Plotly Dash. The integration of Plotly charts into Dash is obviously great.
- For our PDF reports where we convert the chart into an image before rendering the PDF.
For a typical PDF report, we use 5-20 figures to show the evolution of a particular metric over time, the distribution of some value over a number of categories, or the comparison of different categories next to each other.
To create our PDF reports, we use a combination of Weasyprint, Jinja, and Plotly charts. To render a report as a PDF, we first have to render all graphs as images.
Rendering graphs with Kaleido
To do so, we use the great Kaleido package. It uses a Chrome browser to render the graph and save it as an image. The API is straight forward to use.
from kaleido.scopes.plotly import PlotlyScope scope = PlotlyScope() img_bytes = scope.transform( figure=figure, format="png", width=1000, height=1000, scale=4, )
This renders the figure in figure as an image with 1000px height and width and a rendering scale of 4 (i.e. the image actually has dimensions 4000px x 4000px). The higher the scale, the more DPI the final image has, the better it looks, and the larger the final PDF is.
Rendering a lot of graphs
Rendering graphs takes a little bit of time and if you render a lot of them (10-20), it will be a significant share of your program's runtime. To speed up our PDF rendering pipeline, we deployed the following solution.
Internally, Kaleido just outsources the problem of rendering the graph as an image to an included Chrome webbrowser. This means, for Python itself rendering this image is basically waiting for I/O.
To speed up this particular process and since we just wait for I/O, we can use multithreading.
Creating a random graph
Let's start by creating a random figure, like so:
import pandas as pd import numpy as np import plotly.graph_objects as go def get_random_figure() -> go.Figure: n_bars = 50 dates = pd.date_range(start="2021-01-01", end="2021-12-31", freq="M") figure = go.Figure() for i in range(n_bars): values = np.random.rand(len(dates)) figure.add_trace(go.Bar(x=dates, y=values, name=f"Label {i+1}")) figure.update_layout( dict( barmode="group", legend=dict(orientation="h", yanchor="top", xanchor="left"), ) ) figure.update_layout(yaxis=dict(tickformat=".0%"), xaxis=dict(showgrid=False)) return figure
Now, turning a figure into an image can be done using the code from above:
from kaleido.scopes.plotly import PlotlyScope import plotly.graph_objects as go def figure_to_bytes(figure: go.Figure) -> bytes: scope = PlotlyScope() return scope.transform(figure=figure, format="png", width=1000, height=1000, scale=4)
And finally we also define for later:
def transform_random_figure() -> bytes: return figure_to_bytes(get_random_figure())
Running the image transformation in threads
You may or may not know that due to the GIL (global interpreter lock) in Python, only one thread can execute Python code at the same time. Since the transformation of the graph to an image is not Python code, we can make use of threads to start the transformation of a lot of graphs at the same time and then collect the results.
For that, we define a helper class:
from kaleido.scopes.plotly import PlotlyScope scope = PlotlyScope() img_bytes = scope.transform( figure=figure, format="png", width=1000, height=1000, scale=4, )
This class will help us retrieve the result of the transformation (i.e. the bytes of the image).
The next thing we have to do is follow the standard pattern for working with threads in Python:
- Start the threads you want to start with the start() method.
- Using the join() method to wait for the thread to return the result.
Our threads should each call transform_random_figure() and then return the bytes. We start 10 threads in this case.
import pandas as pd import numpy as np import plotly.graph_objects as go def get_random_figure() -> go.Figure: n_bars = 50 dates = pd.date_range(start="2021-01-01", end="2021-12-31", freq="M") figure = go.Figure() for i in range(n_bars): values = np.random.rand(len(dates)) figure.add_trace(go.Bar(x=dates, y=values, name=f"Label {i+1}")) figure.update_layout( dict( barmode="group", legend=dict(orientation="h", yanchor="top", xanchor="left"), ) ) figure.update_layout(yaxis=dict(tickformat=".0%"), xaxis=dict(showgrid=False)) return figure
The start() method will also call the run() method of the thread that starts the actual logic (i.e. executes the given function, which in our case means transform_random_figure()).
To collect the results, we use the join() method of the threads and write the result into files.
from kaleido.scopes.plotly import PlotlyScope import plotly.graph_objects as go def figure_to_bytes(figure: go.Figure) -> bytes: scope = PlotlyScope() return scope.transform(figure=figure, format="png", width=1000, height=1000, scale=4)
How it works
The main idea here is to, whenever we want to transform a graph into an image, we start a thread and this thread will wait for the graph to be finished in the background.
Once we put together the whole report, we call join() on all threads and retrieve the images for all graphs and then put them into the report.
This way, we can already generate the whole report without graphs and save time by not waiting for every graph on its own to be transformed.
Summary
In summary, if you want to transform multiple Plotly charts into images, use the multithreading module in the Python standard library to speed up your conversion process.
You can do so very easily just by moving the transform() call into a thread and then waiting for all threads to finish.
Appendix: The Code
def transform_random_figure() -> bytes: return figure_to_bytes(get_random_figure())
The above is the detailed content of Converting Plotly charts into images in parallel. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

Future trends in Python include performance optimization, stronger type prompts, the rise of alternative runtimes, and the continued growth of the AI/ML field. First, CPython continues to optimize, improving performance through faster startup time, function call optimization and proposed integer operations; second, type prompts are deeply integrated into languages ??and toolchains to enhance code security and development experience; third, alternative runtimes such as PyScript and Nuitka provide new functions and performance advantages; finally, the fields of AI and data science continue to expand, and emerging libraries promote more efficient development and integration. These trends indicate that Python is constantly adapting to technological changes and maintaining its leading position.

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not
