This installment details implementing OTP delivery via Twilio, optimizing OTP sending asynchronously using goroutines, and establishing a robust token-based authentication system.
Sending OTPs with Twilio
The core function for sending OTPs using Twilio's messaging API is presented below:
func (app *application) sendOTPViaTwilio(otp, phoneNumber string) error { client := twilio.NewRestClientWithParams(twilio.ClientParams{ Username: os.Getenv("TWILIO_SID"), Password: os.Getenv("TWILIO_API_KEY"), }) params := &api.CreateMessageParams{} params.SetBody(fmt.Sprintf( "Thank you for choosing Cheershare! Your one-time password is %v.", otp, )) params.SetFrom(os.Getenv("TWILIO_PHONE_NUMBER")) params.SetTo(fmt.Sprintf("+91%v", phoneNumber)) const maxRetries = 3 var lastErr error for attempt := 1; attempt <= maxRetries; attempt++ { resp, err := client.SendSms(params) if err == nil { app.logger.Printf("Message SID: %s", resp.Sid) return nil } lastErr = err time.Sleep(time.Duration(attempt) * 100 * time.Millisecond) } return fmt.Errorf("failed to send OTP after %d retries: %w", maxRetries, lastErr) }
This function utilizes Twilio's Go SDK to send messages. The from
number is a pre-configured Twilio number. A retry mechanism is included for reliability.
Asynchronous OTP Sending with Goroutines
Sequential OTP sending hinders server performance. The solution involves utilizing goroutines to handle OTP delivery concurrently. The application
struct is updated:
type application struct { wg sync.WaitGroup config config models data.Models logger *log.Logger cache *redis.Client }
A helper function facilitates background task execution:
func (app *application) background(fn func()) { app.wg.Add(1) go func() { defer app.wg.Done() defer func() { if err := recover(); err != nil { app.logger.Printf("Error in background function: %v\n", err) } }() fn() }() }
This uses sync.WaitGroup
to manage goroutines, ensuring completion before shutdown.
Database Token Table
A new database table is created to store user tokens:
-- 000002_create-token.up.sql CREATE TABLE IF NOT EXISTS tokens ( hash bytea PRIMARY KEY, user_id bigint NOT NULL REFERENCES users ON DELETE CASCADE, expiry timestamp(0) with time zone NOT NULL, scope text NOT NULL ); -- 000002_create-token.down.sql DROP TABLE IF EXISTS tokens;
This table stores hashed tokens, user IDs, expiry times, and token scopes. Database migration is performed using migrate
.
Token Model and Functions
The data/models.go
file includes functions for token generation, insertion, and retrieval:
// ... (other imports) ... package data // ... (other code) ... func generateToken(userId int64, ttl time.Duration, scope string) (*Token, error) { // ... (token generation logic) ... } func (m TokenModel) Insert(token *Token) error { // ... (database insertion logic) ... } func (m TokenModel) DeleteAllForUser(scope string, userID int64) error { // ... (database deletion logic) ... } func (m TokenModel) New(userId int64, ttl time.Duration, scope string) (*Token, error) { // ... (token creation and insertion logic) ... }
This code handles token creation, hashing, and database interaction. The New
function creates and stores new tokens.
Signup Handler Updates
The cmd/api/user.go
file's signup handler is modified to issue tokens upon successful OTP verification:
// ... (other functions) ... func (app *application) handleUserSignupAndVerification(w http.ResponseWriter, r *http.Request) { // ... (input parsing and validation) ... // ... (OTP generation and sending logic) ... // ... (OTP verification logic) ... // ... (user creation or retrieval) ... token, err := app.generateTokenForUser(user.ID) if err != nil { // ... (error handling) ... } // ... (success response with token) ... }
This integrates token generation into the signup flow.
Middleware Layers
Three middleware layers enhance security and request handling: recoverPanic
, authenticate
, and requireAuthenticatedUser
. These are implemented and applied to routes as shown in the original text. Context management functions (contextSetUser
and contextGetUser
) are used to store and retrieve user data within the request context.
The server configuration integrates these middlewares, and the example shows how to protect routes using requireAuthenticatedUser
. Future enhancements include file uploading, graceful shutdown, and metrics integration. The complete code is available on GitHub.
The above is the detailed content of Build an OTP-Based Authentication Server with Go: Part 3. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Go compiles the program into a standalone binary by default, the main reason is static linking. 1. Simpler deployment: no additional installation of dependency libraries, can be run directly across Linux distributions; 2. Larger binary size: Including all dependencies causes file size to increase, but can be optimized through building flags or compression tools; 3. Higher predictability and security: avoid risks brought about by changes in external library versions and enhance stability; 4. Limited operation flexibility: cannot hot update of shared libraries, and recompile and deployment are required to fix dependency vulnerabilities. These features make Go suitable for CLI tools, microservices and other scenarios, but trade-offs are needed in environments where storage is restricted or relies on centralized management.

Goensuresmemorysafetywithoutmanualmanagementthroughautomaticgarbagecollection,nopointerarithmetic,safeconcurrency,andruntimechecks.First,Go’sgarbagecollectorautomaticallyreclaimsunusedmemory,preventingleaksanddanglingpointers.Second,itdisallowspointe

To create a buffer channel in Go, just specify the capacity parameters in the make function. The buffer channel allows the sending operation to temporarily store data when there is no receiver, as long as the specified capacity is not exceeded. For example, ch:=make(chanint,10) creates a buffer channel that can store up to 10 integer values; unlike unbuffered channels, data will not be blocked immediately when sending, but the data will be temporarily stored in the buffer until it is taken away by the receiver; when using it, please note: 1. The capacity setting should be reasonable to avoid memory waste or frequent blocking; 2. The buffer needs to prevent memory problems from being accumulated indefinitely in the buffer; 3. The signal can be passed by the chanstruct{} type to save resources; common scenarios include controlling the number of concurrency, producer-consumer models and differentiation

Go is ideal for system programming because it combines the performance of compiled languages ??such as C with the ease of use and security of modern languages. 1. In terms of file and directory operations, Go's os package supports creation, deletion, renaming and checking whether files and directories exist. Use os.ReadFile to read the entire file in one line of code, which is suitable for writing backup scripts or log processing tools; 2. In terms of process management, the exec.Command function of the os/exec package can execute external commands, capture output, set environment variables, redirect input and output flows, and control process life cycles, which are suitable for automation tools and deployment scripts; 3. In terms of network and concurrency, the net package supports TCP/UDP programming, DNS query and original sets.

In Go language, calling a structure method requires first defining the structure and the method that binds the receiver, and accessing it using a point number. After defining the structure Rectangle, the method can be declared through the value receiver or the pointer receiver; 1. Use the value receiver such as func(rRectangle)Area()int and directly call it through rect.Area(); 2. If you need to modify the structure, use the pointer receiver such as func(r*Rectangle)SetWidth(...), and Go will automatically handle the conversion of pointers and values; 3. When embedding the structure, the method of embedded structure will be improved, and it can be called directly through the outer structure; 4. Go does not need to force use getter/setter,

In Go, an interface is a type that defines behavior without specifying implementation. An interface consists of method signatures, and any type that implements these methods automatically satisfy the interface. For example, if you define a Speaker interface that contains the Speak() method, all types that implement the method can be considered Speaker. Interfaces are suitable for writing common functions, abstract implementation details, and using mock objects in testing. Defining an interface uses the interface keyword and lists method signatures, without explicitly declaring the type to implement the interface. Common use cases include logs, formatting, abstractions of different databases or services, and notification systems. For example, both Dog and Robot types can implement Speak methods and pass them to the same Anno

In Go language, string operations are mainly implemented through strings package and built-in functions. 1.strings.Contains() is used to determine whether a string contains a substring and returns a Boolean value; 2.strings.Index() can find the location where the substring appears for the first time, and if it does not exist, it returns -1; 3.strings.ReplaceAll() can replace all matching substrings, and can also control the number of replacements through strings.Replace(); 4.len() function is used to obtain the length of the bytes of the string, but when processing Unicode, you need to pay attention to the difference between characters and bytes. These functions are often used in scenarios such as data filtering, text parsing, and string processing.

TheGoiopackageprovidesinterfaceslikeReaderandWritertohandleI/Ooperationsuniformlyacrosssources.1.io.Reader'sReadmethodenablesreadingfromvarioussourcessuchasfilesorHTTPresponses.2.io.Writer'sWritemethodfacilitateswritingtodestinationslikestandardoutpu
