Understanding Selection Sort Algorithm (with Examples in Java)
Jan 18, 2025 am 02:11 AMSelection Sort: A Step-by-Step Guide
Selection Sort is a straightforward sorting algorithm. It repeatedly finds the minimum element from the unsorted part of the list and places it at the beginning. This process continues until the entire list is sorted.
How Selection Sort Works
Let's illustrate with an example, sorting this array in ascending order:
Iteration 1:
The goal is to place the smallest element at the beginning. We start by assuming the first element is the minimum.
We compare the current minimum with each subsequent element, updating the minimum if a smaller element is found.
This continues until the actual minimum is identified.
Finally, we swap the minimum element with the first element.
The first element is now sorted. Subsequent iterations will only consider the unsorted portion.
Subsequent Iterations:
This process repeats for each remaining unsorted element.
The algorithm iterates n-1 times (where n is the array's length). After the fifth iteration (for a six-element array), the last element is implicitly sorted.
Selection Sort Implementation (Java):
import java.util.Arrays; public class SelectionSortTest { public static void main(String[] args) { int[] arr = {8, 2, 6, 4, 9, 1}; System.out.println("Unsorted array: " + Arrays.toString(arr)); selectionSort(arr); System.out.println("Sorted array: " + Arrays.toString(arr)); } public static void selectionSort(int[] arr) { int size = arr.length; // Iterate through the array size-1 times for (int i = 0; i < size - 1; i++) { int minIndex = i; // Find the minimum element in the unsorted part for (int j = i + 1; j < size; j++) { if (arr[j] < arr[minIndex]) { minIndex = j; } } // Swap the minimum element with the first unsorted element int temp = arr[minIndex]; arr[minIndex] = arr[i]; arr[i] = temp; } } }
Output:
Unsorted array: [8, 2, 6, 4, 9, 1] Sorted array: [1, 2, 4, 6, 8, 9]
Complexity Analysis:
- Time Complexity: O(n2) in all cases (best, average, worst). The nested loops always execute a fixed number of times regardless of the input order.
- Space Complexity: O(1). It's an in-place algorithm, requiring constant extra space.
Conclusion:
Selection Sort's O(n2) time complexity makes it inefficient for large datasets. It's best suited for small arrays or situations where simplicity is prioritized over performance.
The above is the detailed content of Understanding Selection Sort Algorithm (with Examples in Java). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The difference between HashMap and Hashtable is mainly reflected in thread safety, null value support and performance. 1. In terms of thread safety, Hashtable is thread-safe, and its methods are mostly synchronous methods, while HashMap does not perform synchronization processing, which is not thread-safe; 2. In terms of null value support, HashMap allows one null key and multiple null values, while Hashtable does not allow null keys or values, otherwise a NullPointerException will be thrown; 3. In terms of performance, HashMap is more efficient because there is no synchronization mechanism, and Hashtable has a low locking performance for each operation. It is recommended to use ConcurrentHashMap instead.

Java uses wrapper classes because basic data types cannot directly participate in object-oriented operations, and object forms are often required in actual needs; 1. Collection classes can only store objects, such as Lists use automatic boxing to store numerical values; 2. Generics do not support basic types, and packaging classes must be used as type parameters; 3. Packaging classes can represent null values ??to distinguish unset or missing data; 4. Packaging classes provide practical methods such as string conversion to facilitate data parsing and processing, so in scenarios where these characteristics are needed, packaging classes are indispensable.

StaticmethodsininterfaceswereintroducedinJava8toallowutilityfunctionswithintheinterfaceitself.BeforeJava8,suchfunctionsrequiredseparatehelperclasses,leadingtodisorganizedcode.Now,staticmethodsprovidethreekeybenefits:1)theyenableutilitymethodsdirectly

The JIT compiler optimizes code through four methods: method inline, hot spot detection and compilation, type speculation and devirtualization, and redundant operation elimination. 1. Method inline reduces call overhead and inserts frequently called small methods directly into the call; 2. Hot spot detection and high-frequency code execution and centrally optimize it to save resources; 3. Type speculation collects runtime type information to achieve devirtualization calls, improving efficiency; 4. Redundant operations eliminate useless calculations and inspections based on operational data deletion, enhancing performance.

Instance initialization blocks are used in Java to run initialization logic when creating objects, which are executed before the constructor. It is suitable for scenarios where multiple constructors share initialization code, complex field initialization, or anonymous class initialization scenarios. Unlike static initialization blocks, it is executed every time it is instantiated, while static initialization blocks only run once when the class is loaded.

Factory mode is used to encapsulate object creation logic, making the code more flexible, easy to maintain, and loosely coupled. The core answer is: by centrally managing object creation logic, hiding implementation details, and supporting the creation of multiple related objects. The specific description is as follows: the factory mode handes object creation to a special factory class or method for processing, avoiding the use of newClass() directly; it is suitable for scenarios where multiple types of related objects are created, creation logic may change, and implementation details need to be hidden; for example, in the payment processor, Stripe, PayPal and other instances are created through factories; its implementation includes the object returned by the factory class based on input parameters, and all objects realize a common interface; common variants include simple factories, factory methods and abstract factories, which are suitable for different complexities.

InJava,thefinalkeywordpreventsavariable’svaluefrombeingchangedafterassignment,butitsbehaviordiffersforprimitivesandobjectreferences.Forprimitivevariables,finalmakesthevalueconstant,asinfinalintMAX_SPEED=100;wherereassignmentcausesanerror.Forobjectref

There are two types of conversion: implicit and explicit. 1. Implicit conversion occurs automatically, such as converting int to double; 2. Explicit conversion requires manual operation, such as using (int)myDouble. A case where type conversion is required includes processing user input, mathematical operations, or passing different types of values ??between functions. Issues that need to be noted are: turning floating-point numbers into integers will truncate the fractional part, turning large types into small types may lead to data loss, and some languages ??do not allow direct conversion of specific types. A proper understanding of language conversion rules helps avoid errors.
