国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Backend Development Python Tutorial Create Your Own AI RAG Chatbot: A Python Guide with LangChain

Create Your Own AI RAG Chatbot: A Python Guide with LangChain

Oct 20, 2024 pm 02:15 PM

Who wouldn’t want instant answers from their documents? That’s exactly what RAG chatbots do—combining retrieval with AI generation for quick, accurate responses!

In this guide, I’ll show you how to create a chatbot using Retrieval-Augmented Generation (RAG) with LangChain and Streamlit. This chatbot will pull relevant information from a knowledge base and use a language model to generate responses.

I’ll walk you through each step, providing multiple options for response generation, whether you use OpenAI, Gemini, or Fireworks—ensuring a flexible and cost-effective solution.

What is Retrieval-Augmented Generation (RAG)?

RAG is a method that combines retrieval and generation to deliver more accurate and context-aware chatbot responses. The retrieval process pulls relevant documents from a knowledge base, while the generation process uses a language model to create a coherent response based on the retrieved content. This ensures your chatbot can answer questions using the most recent data, even if the language model itself hasn’t been specifically trained on that information.

Imagine you have a personal assistant who doesn’t always know the answer to your questions. So, when you ask a question, they look through books and find relevant information (retrieval), then they summarize that information and tell it back to you in their own words (generation). This is essentially how RAG works, combining the best of both worlds.

In a Flowchart RAG process will somewhat look like this:

Create Your Own AI RAG Chatbot: A Python Guide with LangChain

Now, let’s get started, and get our own chatbot!


Setting Up the Project Environment

We'll be using Python mostly in this TUTO, if you are JS head you can follow the explanations and go through the documentation of langchain js.

First, we need to set up our project environment. This includes creating a project directory, installing dependencies, and setting up API keys for different language models.

1. Create a Project Folder and Virtual Environment

Start by creating a project folder and a virtual environment:

mkdir rag-chatbot
cd rag-chatbot
python -m venv venv
source venv/bin/activate

2. Install Dependencies

Next, create a requirements.txt file to list all necessary dependencies:

langchain==0.0.329
streamlit==1.27.2
faiss-cpu==1.7.4
python-dotenv==1.0.0
tiktoken==0.5.1
openai==0.27.10
gemini==0.3.1
fireworks==0.4.0
sentence_transformers==2.2.2

Now, install these dependencies:

pip install -r requirements.txt

3. Setting Up API Keys

We’ll be using OpenAI, Gemini, or Fireworks for the chatbot’s response generation. You can choose any of these based on your preferences.

Don't worry if you are experimenting, Fireworks provide $1 worth of API keys for free, and gemini-1.5-flash model is also free to an extent!

Set up a .env file to store the API keys for your preferred model:

mkdir rag-chatbot
cd rag-chatbot
python -m venv venv
source venv/bin/activate

Make sure to sign up for these services and get your API keys. Both Gemini and Fireworks offer free tiers, while OpenAI charges based on usage.


Document Processing and Chunking

To give the chatbot context, we’ll need to process documents and split them into manageable chunks. This is important because large texts need to be broken down for embedding and indexing.

1. Create document_processor.py

Create a new Python script called document_processor.py to handle document processing:

langchain==0.0.329
streamlit==1.27.2
faiss-cpu==1.7.4
python-dotenv==1.0.0
tiktoken==0.5.1
openai==0.27.10
gemini==0.3.1
fireworks==0.4.0
sentence_transformers==2.2.2

This script loads a text file and splits it into smaller chunks of about 1000 characters with a small overlap to ensure that no context is lost between chunks. Once processed, the documents are ready to be embedded and indexed.


Creating Embeddings and Indexing

Now that we have our documents chunked, the next step is to convert them into embeddings (numerical representations of text) and index them for fast retrieval. (as machines understand numbers easier than words)

1. Create embedding_indexer.py

Create another script called embedding_indexer.py:

pip install -r requirements.txt

In this script, the embeddings are created using a Hugging Face model (all-MiniLM-L6-v2). We then store these embeddings in a FAISS vectorstore, which allows us to quickly retrieve similar text chunks based on a query.


Implementing Retrieval and Response Generation

Here comes the exciting part: combining retrieval with language generation! You’ll now create a RAG chain that fetches relevant chunks from the vectorstore and generates a response using a language model. (vectorstore is a database where we stored our data converted to numbers as vectors)

1. Create rag_chain.py

Let’s create the file rag_chain.py:

# Uncomment your API key
# OPENAI_API_KEY=your_openai_api_key_here
# GEMINI_API_KEY=your_gemini_api_key_here
# FIREWORKS_API_KEY=your_fireworks_api_key_here

Here, we give you the choice between OpenAI, Gemini, or Fireworks based on the API key you provide. The RAG chain will retrieve the top 3 most relevant documents and use the language model to generate a response.

You can switch between models depending on your budget or usage preferences—Gemini and Fireworks are free, while OpenAI charges based on usage.


Building the Chatbot Interface

Now, we’ll build a simple chatbot interface to take user input and generate responses using our RAG chain.

1. Create chatbot.py

Create a new file called chatbot.py:

mkdir rag-chatbot
cd rag-chatbot
python -m venv venv
source venv/bin/activate

This script creates a command-line chatbot interface that continuously listens for user input, processes it through the RAG chain, and returns the generated response.


Creating the Streamlit UI

It’s time to make your chatbot even more user-friendly by building a web interface using Streamlit. This will allow users to interact with your chatbot through a browser.

1. Create app.py

Create app.py:

langchain==0.0.329
streamlit==1.27.2
faiss-cpu==1.7.4
python-dotenv==1.0.0
tiktoken==0.5.1
openai==0.27.10
gemini==0.3.1
fireworks==0.4.0
sentence_transformers==2.2.2

2. Run the Streamlit App

To run your Streamlit app, simply use:

pip install -r requirements.txt

This will launch a web interface where you can upload a text file, ask questions, and receive answers from the chatbot.


Optimizing Performance

For better performance, you can experiment with chunk size and overlap when splitting the text. Larger chunks provide more context, but smaller chunks may make retrieval faster. You can also use Streamlit caching to avoid repeating expensive operations like generating embeddings.

If you want to optimize costs, you can switch between OpenAI, Gemini, or Fireworks depending on the query complexity—use OpenAI for complex questions and Gemini or Fireworks for simpler ones to reduce costs.


Wrapping Up

Congratulations! You've successfully created your own RAG-based chatbot. Now, the possibilities are endless:

  • Create your own personalized study buddy.
  • No more going through long documentations—just "RAG it out" for quick, accurate answers!

The journey starts here, and the potential is limitless!


You can follow my work on GitHub. Feel free to reach out—my DMs are always open on X and LinkedIn.

The above is the detailed content of Create Your Own AI RAG Chatbot: A Python Guide with LangChain. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How does Python's unittest or pytest framework facilitate automated testing? How does Python's unittest or pytest framework facilitate automated testing? Jun 19, 2025 am 01:10 AM

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

How can Python be used for data analysis and manipulation with libraries like NumPy and Pandas? How can Python be used for data analysis and manipulation with libraries like NumPy and Pandas? Jun 19, 2025 am 01:04 AM

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

What are dynamic programming techniques, and how do I use them in Python? What are dynamic programming techniques, and how do I use them in Python? Jun 20, 2025 am 12:57 AM

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

How can you implement custom iterators in Python using __iter__ and __next__? How can you implement custom iterators in Python using __iter__ and __next__? Jun 19, 2025 am 01:12 AM

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

What are the emerging trends or future directions in the Python programming language and its ecosystem? What are the emerging trends or future directions in the Python programming language and its ecosystem? Jun 19, 2025 am 01:09 AM

Future trends in Python include performance optimization, stronger type prompts, the rise of alternative runtimes, and the continued growth of the AI/ML field. First, CPython continues to optimize, improving performance through faster startup time, function call optimization and proposed integer operations; second, type prompts are deeply integrated into languages ??and toolchains to enhance code security and development experience; third, alternative runtimes such as PyScript and Nuitka provide new functions and performance advantages; finally, the fields of AI and data science continue to expand, and emerging libraries promote more efficient development and integration. These trends indicate that Python is constantly adapting to technological changes and maintaining its leading position.

How do I perform network programming in Python using sockets? How do I perform network programming in Python using sockets? Jun 20, 2025 am 12:56 AM

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

Polymorphism in python classes Polymorphism in python classes Jul 05, 2025 am 02:58 AM

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

How do I slice a list in Python? How do I slice a list in Python? Jun 20, 2025 am 12:51 AM

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not

See all articles