


Bagaimana untuk Memilih Perpustakaan Python yang Tepat untuk Pemindahan Fail Selamat?
Oct 23, 2024 am 01:22 AMPemindahan Fail Selamat dalam Python: Penyelesaian Bebas Platform
Pembangunan perisian moden menekankan keperluan untuk protokol pemindahan data yang selamat dan boleh dipercayai. Untuk tujuan ini, SFTP (Secure File Transfer Protocol) telah muncul sebagai pilihan popular kerana mekanisme penyulitan dan pengesahannya yang mantap. Walau bagaimanapun, mencari pustaka Python yang sesuai untuk SFTP boleh mencabar bagi mereka yang baharu dalam bahasa tersebut.
Pelaksanaan SFTP dalam Python
Untuk menangani isu ini, mari kita terokai dua Python perpustakaan yang menyediakan sokongan menyeluruh untuk SFTP:
- Paramiko
Paramiko ialah perpustakaan yang mantap yang membolehkan sambungan selamat dan pemindahan fail SFTP. Ia menampilkan algoritma penyulitan yang kuat dan pilihan penyesuaian, menjadikannya sesuai untuk pelbagai kes penggunaan.
<code class="python">import paramiko host = "THEHOST.com" # hard-coded port = 22 transport = paramiko.Transport((host, port)) password = "THEPASSWORD" # hard-coded username = "THEUSERNAME" # hard-coded transport.connect(username=username, password=password) sftp = paramiko.SFTPClient.from_transport(transport) import sys path = './THETARGETDIRECTORY/' + sys.argv[1] # hard-coded localpath = sys.argv[1] sftp.put(localpath, path) sftp.close() transport.close() print('Upload done.')</code>
- Keong Berpintal
Keong Berpintal adalah sebahagian daripada rangka kerja Twisted dan menawarkan API peringkat lebih tinggi untuk fungsi SFTP. Ia menyediakan set ciri yang lebih komprehensif, termasuk sokongan untuk berbilang protokol dan ciri SSH lanjutan.
<code class="python">from twisted.conch.ssh import filetransfer sshFactory = ConchFactory(username, password) args = ['-l', 'user', 'machine'] sshFactory.setPublicKeysFile('.ssh/id_rsa') client = SSHClientFactory(args) client.setServiceFactory(sshFactory) reactor.connectTCP('machine', 22, client) protocol = client.getService(ConchService) protocol.openSFTP().addCallback(handleConnection)</code>
Memilih Perpustakaan yang Tepat
Keputusan antara Paramiko dan Twisted Conch bergantung pada keperluan dan keperluan khusus anda:
- Kesederhanaan: Paramiko umumnya dianggap lebih mudah untuk digunakan kerana APInya yang mudah.
- Ciri Terperinci: Twisted Conch menawarkan rangkaian ciri yang lebih luas, terutamanya jika anda memerlukan keupayaan SSH lanjutan.
- Prestasi: Kedua-dua perpustakaan menyediakan pelaksanaan SFTP yang cekap, tetapi Paramiko mungkin berprestasi lebih baik sedikit untuk fail besar pemindahan.
- Sokongan Komuniti: Paramiko mempunyai pangkalan pengguna dan komuniti yang lebih besar, yang boleh memberi manfaat untuk sokongan dan dokumentasi.
Dengan memanfaatkan perpustakaan Python ini, pembangun boleh memindahkan fail dengan selamat melalui SFTP, memastikan integriti dan kerahsiaan data.
Atas ialah kandungan terperinci Bagaimana untuk Memilih Perpustakaan Python yang Tepat untuk Pemindahan Fail Selamat?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Keselamatan aplikasi web perlu diberi perhatian. Kelemahan umum di laman web python termasuk XSS, suntikan SQL, CSRF dan risiko memuat naik fail. Untuk XSS, enjin template harus digunakan untuk melarikan diri secara automatik, penapis teks HTML yang kaya dan menetapkan dasar CSP; untuk mengelakkan suntikan SQL, rangka pertanyaan parameter atau ORM, dan mengesahkan input pengguna; Untuk mengelakkan CSRF, mekanisme CSRFTToken mesti diaktifkan dan operasi sensitif mesti disahkan dua kali; Kelemahan muat naik fail mesti digunakan untuk menyekat jenis, menamakan semula fail, dan melarang keizinan pelaksanaan. Berikutan norma -norma dan menggunakan alat yang matang dapat mengurangkan risiko, dan keselamatan memerlukan perhatian dan ujian yang berterusan.

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Parameter lalai Python hanya dimulakan sekali apabila ditakrifkan. Jika objek yang boleh berubah (seperti senarai atau kamus) digunakan sebagai parameter lalai, tingkah laku yang tidak dijangka mungkin disebabkan. Sebagai contoh, apabila menggunakan senarai kosong sebagai parameter lalai, pelbagai panggilan ke fungsi akan menggunakan semula senarai yang sama dan bukannya menghasilkan senarai baru setiap kali. Masalah yang disebabkan oleh tingkah laku ini termasuk: 1. Perkongsian data yang tidak dijangka antara panggilan fungsi; 2. Hasil panggilan berikutnya dipengaruhi oleh panggilan sebelumnya, meningkatkan kesukaran debugging; 3. Ia menyebabkan kesilapan logik dan sukar untuk dikesan; 4. Mudah untuk mengelirukan kedua -dua pemaju baru dan berpengalaman. Untuk mengelakkan masalah, amalan terbaik adalah untuk menetapkan nilai lalai kepada tiada dan membuat objek baru di dalam fungsi, seperti menggunakan my_list = tiada bukan my_list = [] dan pada mulanya dalam fungsi

Menggunakan aplikasi python ke persekitaran pengeluaran memerlukan perhatian terhadap kestabilan, keselamatan dan penyelenggaraan. Pertama, gunakan Gunicorn atau UWSGI untuk menggantikan pelayan pembangunan untuk menyokong pemprosesan serentak; kedua, bekerjasama dengan Nginx sebagai proksi terbalik untuk meningkatkan prestasi; Ketiga, konfigurasikan bilangan proses mengikut bilangan teras CPU untuk mengoptimumkan sumber; Keempat, gunakan persekitaran maya untuk mengasingkan kebergantungan dan membekukan versi untuk memastikan konsistensi; Kelima, membolehkan log terperinci, mengintegrasikan sistem pemantauan, dan menyediakan mekanisme penggera untuk memudahkan operasi dan penyelenggaraan; Keenam, elakkan keizinan akar untuk menjalankan aplikasi, menutup maklumat debugging, dan konfigurasikan HTTPS untuk memastikan keselamatan; Akhirnya, penggunaan automatik dicapai melalui alat CI/CD untuk mengurangkan kesilapan manusia.

Python berfungsi dengan baik dengan bahasa dan sistem lain dalam seni bina mikroservis, kunci adalah bagaimana setiap perkhidmatan berjalan secara bebas dan berkomunikasi dengan berkesan. 1. Menggunakan API standard dan protokol komunikasi (seperti HTTP, REST, GRPC), Python membina API melalui rangka kerja seperti Flask dan FastAPI, dan menggunakan permintaan atau HTTPX untuk memanggil perkhidmatan bahasa lain; 2. Menggunakan broker mesej (seperti Kafka, Rabbitmq, Redis) untuk merealisasikan komunikasi tak segerak, perkhidmatan Python dapat menerbitkan mesej untuk pengguna bahasa lain untuk memproses, meningkatkan sistem decoupling, skalabilitas dan toleransi kesalahan; 3. Memperluas atau membenamkan runtime bahasa lain (seperti Jython) melalui C/C untuk mencapai pelaksanaan

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Senarai Python, Kamus dan Pengumpulan Pengumpulan meningkatkan kebolehbacaan kod dan kecekapan penulisan melalui sintaks ringkas. Mereka sesuai untuk memudahkan operasi lelaran dan penukaran, seperti menggantikan gelung berbilang baris dengan kod satu baris untuk melaksanakan transformasi atau penapisan unsur. 1. Senarai pemantauan seperti [x2forxinrange (10)] secara langsung boleh menghasilkan urutan persegi; 2. KESELAMATAN KAMI seperti {x: x2forxinrange (5)} jelas menyatakan pemetaan nilai utama; 3. Penapisan bersyarat seperti [XforxinNumbersifx%2 == 0] membuat logik penapisan lebih intuitif; 4. Keadaan kompleks juga boleh tertanam, seperti menggabungkan penapisan pelbagai syarat atau ekspresi ternary; Tetapi operasi bersarang atau kesan sampingan yang berlebihan harus dielakkan untuk mengelakkan mengurangkan kebolehkerjaan. Penggunaan derivasi yang rasional dapat mengurangkan

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.
