国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Jadual Kandungan
101 Buku
Ciptaan Kami
Kami berada di Sederhana
Rumah pembangunan bahagian belakang Tutorial Python Teknik Python lanjutan untuk Pemprosesan dan Analisis Teks yang Cekap

Teknik Python lanjutan untuk Pemprosesan dan Analisis Teks yang Cekap

Jan 13, 2025 am 11:48 AM

dvanced Python Techniques for Efficient Text Processing and Analysis

Sebagai pengarang yang prolifik, saya menjemput anda untuk menerokai buku saya di Amazon. Ingat untuk mengikuti saya di Medium untuk sokongan dan kemas kini yang berterusan. Terima kasih atas sokongan anda yang tidak ternilai!

Bertahun-tahun pembangunan Python tertumpu pada pemprosesan dan analisis teks telah mengajar saya kepentingan teknik yang cekap. Artikel ini menyerlahkan enam kaedah Python lanjutan yang sering saya gunakan untuk meningkatkan prestasi projek NLP.

Ungkapan Biasa (Modul semula)

Ekspresi biasa sangat diperlukan untuk pemadanan corak dan manipulasi teks. Modul re Python menawarkan kit alat yang mantap. Menguasai regex memudahkan pemprosesan teks yang kompleks.

Sebagai contoh, mengekstrak alamat e-mel:

import re

text = "Contact us at info@example.com or support@example.com"
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
emails = re.findall(email_pattern, text)
print(emails)

Output: ['info@example.com', 'support@example.com']

Regex juga cemerlang dalam penggantian teks. Menukar jumlah dolar kepada euro:

text = "The price is .99"
new_text = re.sub(r'$(\d+\.\d{2})', lambda m: f"€{float(m.group(1))*0.85:.2f}", text)
print(new_text)

Output: "The price is €9.34"

Utiliti Modul Rentetan

Modul string Python, walaupun kurang menonjol daripada re, menyediakan pemalar dan fungsi yang berguna untuk pemprosesan teks, seperti mencipta jadual terjemahan atau mengendalikan pemalar rentetan.

Mengalih keluar tanda baca:

import string

text = "Hello, World! How are you?"
translator = str.maketrans("", "", string.punctuation)
cleaned_text = text.translate(translator)
print(cleaned_text)

Output: "Hello World How are you"

difflib untuk Perbandingan Jujukan

Membandingkan rentetan atau mengenal pasti persamaan adalah perkara biasa. difflib menawarkan alatan untuk perbandingan jujukan, sesuai untuk tujuan ini.

Mencari perkataan yang serupa:

from difflib import get_close_matches

words = ["python", "programming", "code", "developer"]
similar = get_close_matches("pythonic", words, n=1, cutoff=0.6)
print(similar)

Output: ['python']

SequenceMatcher mengendalikan perbandingan yang lebih rumit:

from difflib import SequenceMatcher

def similarity(a, b):
    return SequenceMatcher(None, a, b).ratio()

print(similarity("python", "pyhton"))

Output: (anggaran) 0.83

Jarak Levenshtein untuk Padanan Kabur

Algoritma jarak Levenshtein (selalunya menggunakan pustaka python-Levenshtein) adalah penting untuk semakan ejaan dan padanan kabur.

Semakan ejaan:

import Levenshtein

def spell_check(word, dictionary):
    return min(dictionary, key=lambda x: Levenshtein.distance(word, x))

dictionary = ["python", "programming", "code", "developer"]
print(spell_check("progamming", dictionary))

Output: "programming"

Mencari rentetan yang serupa:

def find_similar(word, words, max_distance=2):
    return [w for w in words if Levenshtein.distance(word, w) <= max_distance]

print(find_similar("code", ["code", "coder", "python"]))

Output: ['code', 'coder']

ftfy untuk Pembetulan Pengekodan Teks

Pustaka ftfy menangani isu pengekodan, secara automatik mengesan dan membetulkan masalah biasa seperti mojibake.

Membetulkan mojibake:

import ftfy

text = "The Mona Lisa doesn?¢a??a?¢t have eyebrows."
fixed_text = ftfy.fix_text(text)
print(fixed_text)

Output: "The Mona Lisa doesn't have eyebrows."

Menormalkan Unikod:

weird_text = "This is Fullwidth text"
normal_text = ftfy.fix_text(weird_text)
print(normal_text)

Output: "This is Fullwidth text"

Tokenisasi Cekap dengan spaCy dan NLTK

Tokenisasi adalah asas dalam NLP. spaCy dan NLTK menyediakan keupayaan tokenisasi lanjutan melebihi split() yang mudah.

Tokenisasi dengan spaCy:

import re

text = "Contact us at info@example.com or support@example.com"
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
emails = re.findall(email_pattern, text)
print(emails)

Output: ['The', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog', '.']

NLTK word_tokenize:

text = "The price is .99"
new_text = re.sub(r'$(\d+\.\d{2})', lambda m: f"€{float(m.group(1))*0.85:.2f}", text)
print(new_text)

Output: (Serupa dengan spaCy)

Aplikasi Praktikal & Amalan Terbaik

Teknik ini boleh digunakan untuk klasifikasi teks, analisis sentimen dan mendapatkan maklumat. Untuk set data yang besar, utamakan kecekapan memori (penjana), memanfaatkan berbilang pemprosesan untuk tugas terikat CPU, gunakan struktur data yang sesuai (set untuk ujian keahlian), susun ungkapan biasa untuk kegunaan berulang dan gunakan perpustakaan seperti panda untuk pemprosesan CSV.

Dengan melaksanakan teknik dan amalan terbaik ini, anda boleh meningkatkan kecekapan dan keberkesanan aliran kerja pemprosesan teks anda dengan ketara. Ingat bahawa amalan dan percubaan yang konsisten adalah kunci untuk menguasai kemahiran berharga ini.


101 Buku

101 Books, sebuah rumah penerbitan berkuasa AI yang diasaskan bersama oleh Aarav Joshi, menawarkan buku berkualiti tinggi dengan harga berpatutan berkat teknologi AI yang canggih. Lihat Kod Bersih Golang di Amazon. Cari "Aarav Joshi" untuk lebih banyak tajuk dan diskaun istimewa!

Ciptaan Kami

Pusat Pelabur, Pusat Pelabur (Bahasa Sepanyol/Jerman), Kehidupan Pintar, Zaman & Gema, Misteri Membingungkan, Hindutva, Elite Dev, Sekolah JS


Kami berada di Sederhana

Tech Koala Insights, Epochs & Echoes World, Investor Central Medium, Medium Misteri Membingungkan, Sains & Epochs Medium, Hindutva Moden

Atas ialah kandungan terperinci Teknik Python lanjutan untuk Pemprosesan dan Analisis Teks yang Cekap. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Apakah beberapa kelemahan keselamatan biasa dalam aplikasi web Python (mis., XSS, suntikan SQL) dan bagaimana mereka dapat dikurangkan? Apakah beberapa kelemahan keselamatan biasa dalam aplikasi web Python (mis., XSS, suntikan SQL) dan bagaimana mereka dapat dikurangkan? Jun 10, 2025 am 12:13 AM

Keselamatan aplikasi web perlu diberi perhatian. Kelemahan umum di laman web python termasuk XSS, suntikan SQL, CSRF dan risiko memuat naik fail. Untuk XSS, enjin template harus digunakan untuk melarikan diri secara automatik, penapis teks HTML yang kaya dan menetapkan dasar CSP; untuk mengelakkan suntikan SQL, rangka pertanyaan parameter atau ORM, dan mengesahkan input pengguna; Untuk mengelakkan CSRF, mekanisme CSRFTToken mesti diaktifkan dan operasi sensitif mesti disahkan dua kali; Kelemahan muat naik fail mesti digunakan untuk menyekat jenis, menamakan semula fail, dan melarang keizinan pelaksanaan. Berikutan norma -norma dan menggunakan alat yang matang dapat mengurangkan risiko, dan keselamatan memerlukan perhatian dan ujian yang berterusan.

Bagaimanakah rangka kerja Python atau PyTest memudahkan ujian automatik? Bagaimanakah rangka kerja Python atau PyTest memudahkan ujian automatik? Jun 19, 2025 am 01:10 AM

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Bagaimanakah Python mengendalikan argumen lalai yang boleh berubah dalam fungsi, dan mengapa ini boleh menjadi masalah? Bagaimanakah Python mengendalikan argumen lalai yang boleh berubah dalam fungsi, dan mengapa ini boleh menjadi masalah? Jun 14, 2025 am 12:27 AM

Parameter lalai Python hanya dimulakan sekali apabila ditakrifkan. Jika objek yang boleh berubah (seperti senarai atau kamus) digunakan sebagai parameter lalai, tingkah laku yang tidak dijangka mungkin disebabkan. Sebagai contoh, apabila menggunakan senarai kosong sebagai parameter lalai, pelbagai panggilan ke fungsi akan menggunakan semula senarai yang sama dan bukannya menghasilkan senarai baru setiap kali. Masalah yang disebabkan oleh tingkah laku ini termasuk: 1. Perkongsian data yang tidak dijangka antara panggilan fungsi; 2. Hasil panggilan berikutnya dipengaruhi oleh panggilan sebelumnya, meningkatkan kesukaran debugging; 3. Ia menyebabkan kesilapan logik dan sukar untuk dikesan; 4. Mudah untuk mengelirukan kedua -dua pemaju baru dan berpengalaman. Untuk mengelakkan masalah, amalan terbaik adalah untuk menetapkan nilai lalai kepada tiada dan membuat objek baru di dalam fungsi, seperti menggunakan my_list = tiada bukan my_list = [] dan pada mulanya dalam fungsi

Apakah pertimbangan untuk menggunakan aplikasi Python ke persekitaran pengeluaran? Apakah pertimbangan untuk menggunakan aplikasi Python ke persekitaran pengeluaran? Jun 10, 2025 am 12:14 AM

Menggunakan aplikasi python ke persekitaran pengeluaran memerlukan perhatian terhadap kestabilan, keselamatan dan penyelenggaraan. Pertama, gunakan Gunicorn atau UWSGI untuk menggantikan pelayan pembangunan untuk menyokong pemprosesan serentak; kedua, bekerjasama dengan Nginx sebagai proksi terbalik untuk meningkatkan prestasi; Ketiga, konfigurasikan bilangan proses mengikut bilangan teras CPU untuk mengoptimumkan sumber; Keempat, gunakan persekitaran maya untuk mengasingkan kebergantungan dan membekukan versi untuk memastikan konsistensi; Kelima, membolehkan log terperinci, mengintegrasikan sistem pemantauan, dan menyediakan mekanisme penggera untuk memudahkan operasi dan penyelenggaraan; Keenam, elakkan keizinan akar untuk menjalankan aplikasi, menutup maklumat debugging, dan konfigurasikan HTTPS untuk memastikan keselamatan; Akhirnya, penggunaan automatik dicapai melalui alat CI/CD untuk mengurangkan kesilapan manusia.

Bagaimanakah Python dapat diintegrasikan dengan bahasa atau sistem lain dalam seni bina microservices? Bagaimanakah Python dapat diintegrasikan dengan bahasa atau sistem lain dalam seni bina microservices? Jun 14, 2025 am 12:25 AM

Python berfungsi dengan baik dengan bahasa dan sistem lain dalam seni bina mikroservis, kunci adalah bagaimana setiap perkhidmatan berjalan secara bebas dan berkomunikasi dengan berkesan. 1. Menggunakan API standard dan protokol komunikasi (seperti HTTP, REST, GRPC), Python membina API melalui rangka kerja seperti Flask dan FastAPI, dan menggunakan permintaan atau HTTPX untuk memanggil perkhidmatan bahasa lain; 2. Menggunakan broker mesej (seperti Kafka, Rabbitmq, Redis) untuk merealisasikan komunikasi tak segerak, perkhidmatan Python dapat menerbitkan mesej untuk pengguna bahasa lain untuk memproses, meningkatkan sistem decoupling, skalabilitas dan toleransi kesalahan; 3. Memperluas atau membenamkan runtime bahasa lain (seperti Jython) melalui C/C untuk mencapai pelaksanaan

Bagaimanakah Python boleh digunakan untuk analisis data dan manipulasi dengan perpustakaan seperti numpy dan panda? Bagaimanakah Python boleh digunakan untuk analisis data dan manipulasi dengan perpustakaan seperti numpy dan panda? Jun 19, 2025 am 01:04 AM

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Bagaimanakah senarai, kamus, dan menetapkan pemantauan meningkatkan kebolehbacaan kod dan kesimpulan dalam Python? Bagaimanakah senarai, kamus, dan menetapkan pemantauan meningkatkan kebolehbacaan kod dan kesimpulan dalam Python? Jun 14, 2025 am 12:31 AM

Senarai Python, Kamus dan Pengumpulan Pengumpulan meningkatkan kebolehbacaan kod dan kecekapan penulisan melalui sintaks ringkas. Mereka sesuai untuk memudahkan operasi lelaran dan penukaran, seperti menggantikan gelung berbilang baris dengan kod satu baris untuk melaksanakan transformasi atau penapisan unsur. 1. Senarai pemantauan seperti [x2forxinrange (10)] secara langsung boleh menghasilkan urutan persegi; 2. KESELAMATAN KAMI seperti {x: x2forxinrange (5)} jelas menyatakan pemetaan nilai utama; 3. Penapisan bersyarat seperti [XforxinNumbersifx%2 == 0] membuat logik penapisan lebih intuitif; 4. Keadaan kompleks juga boleh tertanam, seperti menggabungkan penapisan pelbagai syarat atau ekspresi ternary; Tetapi operasi bersarang atau kesan sampingan yang berlebihan harus dielakkan untuk mengelakkan mengurangkan kebolehkerjaan. Penggunaan derivasi yang rasional dapat mengurangkan

Bagaimana anda boleh melaksanakan iterators tersuai di Python menggunakan __iter__ dan __Next__? Bagaimana anda boleh melaksanakan iterators tersuai di Python menggunakan __iter__ dan __Next__? Jun 19, 2025 am 01:12 AM

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

See all articles