国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Jadual Kandungan
101 Buku
Ciptaan Kami
Kami berada di Sederhana
Rumah pembangunan bahagian belakang Tutorial Python Perpustakaan Python yang luar biasa untuk Pembangunan Web Async Berprestasi Tinggi

Perpustakaan Python yang luar biasa untuk Pembangunan Web Async Berprestasi Tinggi

Jan 21, 2025 am 12:16 AM

owerful Python Libraries for High-Performance Async Web Development

Sebagai pengarang yang prolifik, saya menggalakkan anda untuk meneroka buku saya di Amazon. Ingat untuk mengikuti saya di Medium untuk sokongan berterusan. terima kasih! Sokongan anda tidak ternilai!

Keupayaan tak segerak Python telah merevolusikan pembangunan web. Saya mempunyai peluang untuk bekerja dengan beberapa perpustakaan berkuasa yang menggunakan potensi ini sepenuhnya. Mari kita mendalami enam perpustakaan utama yang telah memberi kesan ketara kepada pembangunan web tak segerak.

FastAPI telah menjadi rangka kerja pilihan saya dengan pantas untuk penciptaan API berprestasi tinggi. Kelajuan, kemesraan pengguna dan dokumentasi API automatiknya adalah luar biasa. Penggunaan pembayang jenis Python FastAPI meningkatkan kebolehbacaan kod dan mendayakan pengesahan dan penyirian permintaan automatik.

Berikut ialah contoh aplikasi FastAPI yang mudah:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def root():
    return {"message": "Hello World"}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

Kod ini mewujudkan API asas dengan dua titik akhir. Pembayang jenis parameter item_id secara automatik mengesahkan jenis data integernya.

Untuk operasi HTTP tak segerak sisi klien dan pelayan, aiohttp telah terbukti boleh dipercayai secara konsisten. Fleksibilitinya merangkumi permintaan API serentak kepada membina pelayan web yang lengkap.

Berikut ialah cara menggunakan aiohttp sebagai pelanggan untuk berbilang permintaan serentak:

import aiohttp
import asyncio

async def fetch(session, url):
    async with session.get(url) as response:
        return await response.text()

async def main():
    urls = ['http://example.com', 'http://example.org', 'http://example.net']
    async with aiohttp.ClientSession() as session:
        tasks = [fetch(session, url) for url in urls]
        responses = await asyncio.gather(*tasks)
        for url, response in zip(urls, responses):
            print(f"{url}: {len(response)} bytes")

asyncio.run(main())

Skrip ini pada masa yang sama mendapatkan semula kandungan daripada berbilang URL, mempamerkan kecekapan operasi tak segerak.

Sanic telah mengagumkan saya dengan kesederhanaan seperti Flask ditambah dengan prestasi tak segerak. Ia direka untuk pembangun yang biasa dengan Flask, sambil masih memanfaatkan potensi penuh pengaturcaraan tak segerak.

Aplikasi asas Sanic:

from sanic import Sanic
from sanic.response import json

app = Sanic("MyApp")

@app.route("/")
async def test(request):
    return json({"hello": "world"})

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=8000)

Ini mewujudkan titik akhir API JSON yang mudah, menyerlahkan sintaks Sanic yang jelas.

Tornado telah menjadi pilihan yang boleh dipercayai untuk mencipta aplikasi web yang boleh skala dan tidak menyekat. Pustaka rangkaian bersepadunya amat berguna untuk tinjauan panjang dan WebSockets.

Berikut ialah contoh pengendali WebSocket Tornado:

import tornado.ioloop
import tornado.web
import tornado.websocket

class EchoWebSocket(tornado.websocket.WebSocketHandler):
    def open(self):
        print("WebSocket opened")

    def on_message(self, message):
        self.write_message(u"You said: " + message)

    def on_close(self):
        print("WebSocket closed")

if __name__ == "__main__":
    application = tornado.web.Application([
        (r"/websocket", EchoWebSocket),
    ])
    application.listen(8888)
    tornado.ioloop.IOLoop.current().start()

Kod ini menyediakan pelayan WebSocket yang mencerminkan mesej yang diterima.

Quart telah menjadi transformatif untuk projek yang memerlukan penghijrahan aplikasi Flask kepada operasi tak segerak tanpa penulisan semula yang lengkap. APInya mencerminkan Flask dengan teliti, memastikan peralihan yang lancar.

Aplikasi Kuart mudah:

from quart import Quart, websocket

app = Quart(__name__)

@app.route('/')
async def hello():
    return 'Hello, World!'

@app.websocket('/ws')
async def ws():
    while True:
        data = await websocket.receive()
        await websocket.send(f"echo {data}")

if __name__ == '__main__':
    app.run()

Ini menggambarkan laluan standard dan WebSocket, mempamerkan kepelbagaian Quart.

Starlette berfungsi sebagai asas pilihan saya untuk rangka kerja ASGI yang ringan. Sebagai asas untuk FastAPI, ia cemerlang dalam membina perkhidmatan web tak segerak berprestasi tinggi.

Aplikasi asas Starlette:

from starlette.applications import Starlette
from starlette.responses import JSONResponse
from starlette.routing import Route

async def homepage(request):
    return JSONResponse({'hello': 'world'})

app = Starlette(debug=True, routes=[
    Route('/', homepage),
])

Ini menyediakan API JSON yang ringkas, menyerlahkan reka bentuk minimalis Starlette.

Bekerja dengan perpustakaan tak segerak ini telah mengajar saya beberapa amalan terbaik untuk meningkatkan prestasi aplikasi dan kebolehpercayaan.

Untuk tugasan yang berjalan lama, tugasan latar belakang atau baris gilir kerja adalah penting untuk menghalang gelung acara utama disekat. Berikut ialah contoh menggunakan FastAPI BackgroundTasks:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def root():
    return {"message": "Hello World"}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

Ini menjadualkan penulisan log secara tidak segerak, membenarkan respons API segera.

Untuk operasi pangkalan data, pemacu pangkalan data tak segerak adalah penting. Perpustakaan seperti asyncpg (PostgreSQL) dan motor (MongoDB) tidak ternilai.

Apabila berinteraksi dengan API luaran, pelanggan HTTP tak segerak dengan pengendalian ralat dan percubaan semula yang betul adalah penting.

Mengenai prestasi, FastAPI dan Sanic secara amnya menawarkan prestasi mentah yang unggul untuk API mudah. Walau bagaimanapun, pemilihan rangka kerja selalunya bergantung pada keperluan projek dan kebiasaan pasukan.

FastAPI cemerlang dengan dokumentasi API automatik dan pengesahan permintaan. Aiohttp menyediakan kawalan yang lebih besar ke atas tingkah laku klien/pelayan HTTP. Sanic menawarkan kesederhanaan seperti Flask dengan keupayaan tak segerak. Pustaka rangkaian bersepadu Tornado sangat sesuai untuk WebSockets dan tinjauan panjang. Quart memudahkan pemindahan aplikasi Flask ke operasi tak segerak. Starlette sangat baik untuk membina rangka kerja tersuai atau pelayan ASGI yang ringan.

Ringkasnya, enam perpustakaan ini telah meningkatkan keupayaan saya dengan ketara untuk membina aplikasi web tak segerak yang cekap dan berprestasi tinggi dalam Python. Setiap mempunyai kekuatan yang unik, dan pilihan optimum bergantung pada keperluan khusus projek. Dengan menggunakan alatan ini dan mematuhi amalan terbaik tak segerak, saya telah mencipta aplikasi web yang sangat serentak, responsif dan berskala.


101 Buku

101 Buku ialah syarikat penerbitan dikuasakan AI yang diasaskan bersama oleh pengarang Aarav Joshi. Teknologi AI canggih kami mengekalkan kos penerbitan yang sangat rendah—sesetengah buku berharga serendah $4—menjadikan pengetahuan berkualiti boleh diakses oleh semua.

Temui buku kami Kod Bersih Golang di Amazon.

Kekal dikemas kini tentang berita terkini kami. Apabila mencari buku, cari Aarav Joshi untuk mencari lebih banyak tajuk. Gunakan pautan yang disediakan untuk diskaun istimewa!

Ciptaan Kami

Terokai ciptaan kami:

Pusat Pelabur | Pelabur Central Spanish | Pelabur Jerman Tengah | Hidup Pintar | Epos & Gema | Misteri Membingungkan | Hindutva | Pembangunan Elit | Sekolah JS


Kami berada di Sederhana

Tech Koala Insights | Dunia Epok & Gema | Medium Pusat Pelabur | Medium Misteri Membingungkan | Sains & Zaman Sederhana | Hindutva Moden

Atas ialah kandungan terperinci Perpustakaan Python yang luar biasa untuk Pembangunan Web Async Berprestasi Tinggi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Apakah beberapa kelemahan keselamatan biasa dalam aplikasi web Python (mis., XSS, suntikan SQL) dan bagaimana mereka dapat dikurangkan? Apakah beberapa kelemahan keselamatan biasa dalam aplikasi web Python (mis., XSS, suntikan SQL) dan bagaimana mereka dapat dikurangkan? Jun 10, 2025 am 12:13 AM

Keselamatan aplikasi web perlu diberi perhatian. Kelemahan umum di laman web python termasuk XSS, suntikan SQL, CSRF dan risiko memuat naik fail. Untuk XSS, enjin template harus digunakan untuk melarikan diri secara automatik, penapis teks HTML yang kaya dan menetapkan dasar CSP; untuk mengelakkan suntikan SQL, rangka pertanyaan parameter atau ORM, dan mengesahkan input pengguna; Untuk mengelakkan CSRF, mekanisme CSRFTToken mesti diaktifkan dan operasi sensitif mesti disahkan dua kali; Kelemahan muat naik fail mesti digunakan untuk menyekat jenis, menamakan semula fail, dan melarang keizinan pelaksanaan. Berikutan norma -norma dan menggunakan alat yang matang dapat mengurangkan risiko, dan keselamatan memerlukan perhatian dan ujian yang berterusan.

Bagaimanakah rangka kerja Python atau PyTest memudahkan ujian automatik? Bagaimanakah rangka kerja Python atau PyTest memudahkan ujian automatik? Jun 19, 2025 am 01:10 AM

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Apakah pertimbangan untuk menggunakan aplikasi Python ke persekitaran pengeluaran? Apakah pertimbangan untuk menggunakan aplikasi Python ke persekitaran pengeluaran? Jun 10, 2025 am 12:14 AM

Menggunakan aplikasi python ke persekitaran pengeluaran memerlukan perhatian terhadap kestabilan, keselamatan dan penyelenggaraan. Pertama, gunakan Gunicorn atau UWSGI untuk menggantikan pelayan pembangunan untuk menyokong pemprosesan serentak; kedua, bekerjasama dengan Nginx sebagai proksi terbalik untuk meningkatkan prestasi; Ketiga, konfigurasikan bilangan proses mengikut bilangan teras CPU untuk mengoptimumkan sumber; Keempat, gunakan persekitaran maya untuk mengasingkan kebergantungan dan membekukan versi untuk memastikan konsistensi; Kelima, membolehkan log terperinci, mengintegrasikan sistem pemantauan, dan menyediakan mekanisme penggera untuk memudahkan operasi dan penyelenggaraan; Keenam, elakkan keizinan akar untuk menjalankan aplikasi, menutup maklumat debugging, dan konfigurasikan HTTPS untuk memastikan keselamatan; Akhirnya, penggunaan automatik dicapai melalui alat CI/CD untuk mengurangkan kesilapan manusia.

Bagaimanakah Python mengendalikan argumen lalai yang boleh berubah dalam fungsi, dan mengapa ini boleh menjadi masalah? Bagaimanakah Python mengendalikan argumen lalai yang boleh berubah dalam fungsi, dan mengapa ini boleh menjadi masalah? Jun 14, 2025 am 12:27 AM

Parameter lalai Python hanya dimulakan sekali apabila ditakrifkan. Jika objek yang boleh berubah (seperti senarai atau kamus) digunakan sebagai parameter lalai, tingkah laku yang tidak dijangka mungkin disebabkan. Sebagai contoh, apabila menggunakan senarai kosong sebagai parameter lalai, pelbagai panggilan ke fungsi akan menggunakan semula senarai yang sama dan bukannya menghasilkan senarai baru setiap kali. Masalah yang disebabkan oleh tingkah laku ini termasuk: 1. Perkongsian data yang tidak dijangka antara panggilan fungsi; 2. Hasil panggilan berikutnya dipengaruhi oleh panggilan sebelumnya, meningkatkan kesukaran debugging; 3. Ia menyebabkan kesilapan logik dan sukar untuk dikesan; 4. Mudah untuk mengelirukan kedua -dua pemaju baru dan berpengalaman. Untuk mengelakkan masalah, amalan terbaik adalah untuk menetapkan nilai lalai kepada tiada dan membuat objek baru di dalam fungsi, seperti menggunakan my_list = tiada bukan my_list = [] dan pada mulanya dalam fungsi

Bagaimanakah Python dapat diintegrasikan dengan bahasa atau sistem lain dalam seni bina microservices? Bagaimanakah Python dapat diintegrasikan dengan bahasa atau sistem lain dalam seni bina microservices? Jun 14, 2025 am 12:25 AM

Python berfungsi dengan baik dengan bahasa dan sistem lain dalam seni bina mikroservis, kunci adalah bagaimana setiap perkhidmatan berjalan secara bebas dan berkomunikasi dengan berkesan. 1. Menggunakan API standard dan protokol komunikasi (seperti HTTP, REST, GRPC), Python membina API melalui rangka kerja seperti Flask dan FastAPI, dan menggunakan permintaan atau HTTPX untuk memanggil perkhidmatan bahasa lain; 2. Menggunakan broker mesej (seperti Kafka, Rabbitmq, Redis) untuk merealisasikan komunikasi tak segerak, perkhidmatan Python dapat menerbitkan mesej untuk pengguna bahasa lain untuk memproses, meningkatkan sistem decoupling, skalabilitas dan toleransi kesalahan; 3. Memperluas atau membenamkan runtime bahasa lain (seperti Jython) melalui C/C untuk mencapai pelaksanaan

Bagaimanakah Python boleh digunakan untuk analisis data dan manipulasi dengan perpustakaan seperti numpy dan panda? Bagaimanakah Python boleh digunakan untuk analisis data dan manipulasi dengan perpustakaan seperti numpy dan panda? Jun 19, 2025 am 01:04 AM

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Bagaimanakah senarai, kamus, dan menetapkan pemantauan meningkatkan kebolehbacaan kod dan kesimpulan dalam Python? Bagaimanakah senarai, kamus, dan menetapkan pemantauan meningkatkan kebolehbacaan kod dan kesimpulan dalam Python? Jun 14, 2025 am 12:31 AM

Senarai Python, Kamus dan Pengumpulan Pengumpulan meningkatkan kebolehbacaan kod dan kecekapan penulisan melalui sintaks ringkas. Mereka sesuai untuk memudahkan operasi lelaran dan penukaran, seperti menggantikan gelung berbilang baris dengan kod satu baris untuk melaksanakan transformasi atau penapisan unsur. 1. Senarai pemantauan seperti [x2forxinrange (10)] secara langsung boleh menghasilkan urutan persegi; 2. KESELAMATAN KAMI seperti {x: x2forxinrange (5)} jelas menyatakan pemetaan nilai utama; 3. Penapisan bersyarat seperti [XforxinNumbersifx%2 == 0] membuat logik penapisan lebih intuitif; 4. Keadaan kompleks juga boleh tertanam, seperti menggabungkan penapisan pelbagai syarat atau ekspresi ternary; Tetapi operasi bersarang atau kesan sampingan yang berlebihan harus dielakkan untuk mengelakkan mengurangkan kebolehkerjaan. Penggunaan derivasi yang rasional dapat mengurangkan

Bagaimana anda boleh melaksanakan iterators tersuai di Python menggunakan __iter__ dan __Next__? Bagaimana anda boleh melaksanakan iterators tersuai di Python menggunakan __iter__ dan __Next__? Jun 19, 2025 am 01:12 AM

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

See all articles